C-Reactive protein reactions to glucose-insulin-potassium infusion and relations to infarct size in patients with acute coronary syndromes

Hadeel Alkofide, Gordon S Huggins, Joni R Beshansky, Robin Ruthazer, Inga Peter, Madhab Ray, Jayanta T Mukherjee, Harry P Selker, Hadeel Alkofide, Gordon S Huggins, Joni R Beshansky, Robin Ruthazer, Inga Peter, Madhab Ray, Jayanta T Mukherjee, Harry P Selker

Abstract

Background: Some benefits of glucose-insulin-potassium (GIK) in patients with acute coronary syndromes (ACS) may be from an anti-inflammatory effect. The primary aim of this study was to assess the impact of GIK administration early in the course of ACS on inflammatory marker C-reactive protein (CRP) levels. A secondary aim was to investigate the association between CRP and 30-day infarct size.

Methods and results: Retrospective analysis of participants with ACS randomly assigned to GIK or placebo for at least 8 h in the IMMEDIATE Trial biological mechanism cohort (n = 143). High sensitivity CRP (hs-CRP) was measured at emergency department presentation, and 6 and 12 h into infusion. Logarithmically transformed hs-CRP values at 12-hours were lower with GIK vs. placebo (mean =0.65 mg/L in GIK, 0.84 mg/L in placebo), with a marginal trend toward significance (P = 0.053). Furthermore, using mixed models of hs-CRP, time, and study group, there was a significant increase in hs-CRP levels over time, but the rate of change did not differ between treatment arms (P = 0.3). Multivariable analysis showed that an elevation in hs-CRP, measured at 12 h, was an independent predictor of 30-day infarct size (β coefficient, 6.80; P = 0.04) using sestamibi SPECT imaging.

Conclusions: The results of this study show no significant effect of GIK on hs-CRP. In addition our results show that in patients with ACS, hs-CRP measured as early as 12 h can predict 30-day infarct size.

Trial registration: ClinicalTrials.gov NCT00091507.

Figures

Fig. 1
Fig. 1
hs-CRP Levels per Treatment Arm. Time course of mean ± SEM hs-CRP at initial, 6 h and 12 h per treatment arm. GIK indicates glucose-insulin-potassium; Hs-CRP high sensitivity C-reactive protein. *P = 0.053 between groups at 12 h (independent sample t-test). † P˂0.01 within group differences between initial and 6 h, 6 h and 12 h, and initial and 12 h (paired sample t-test). Initial time represents the first hs-CRP measurement (median = 2.5 h)

References

    1. Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J. 2004;25(8):634–41. doi: 10.1016/j.ehj.2004.02.018.
    1. Hadj A, Pepe S, Marasco S, Rosenfeldt F. The principles of metabolic therapy for heart disease. Heart Lung Circ. 2003;12(Suppl 2):S55–62. doi: 10.1016/S1443-9506(03)90391-X.
    1. Schofield RS, Hill JA. Role of metabolically active drugs in the management of ischemic heart disease. Am J Cardiovasc Drugs. 2001;1(1):23–35. doi: 10.2165/00129784-200101010-00003.
    1. Hadj A, Pepe S, Rosenfeldt F. The clinical application of metabolic therapy for cardiovascular disease. Heart Lung Circ. 2007;16(Suppl 3):S56–64. doi: 10.1016/j.hlc.2007.04.001.
    1. Sodi-Pallares D, Testelli MR, Fishleder BL, Bisteni A, Medrano GA, Friedland C, et al. Effects of an intravenous infusion of a potassium-glucose-insulin solution on the electrocardiographic signs of myocardial infarction. A preliminary clinical report. Am J Cardiol. 1962;9:166–81. doi: 10.1016/0002-9149(62)90035-8.
    1. Apstein CS, Opie LH. Glucose-insulin-potassium (GIK) for acute myocardial infarction: a negative study with a positive value. Cardiovasc Drugs Ther. 1999;13(3):185–9. doi: 10.1023/A:1007757407246.
    1. Opie LH, Bruyneel K, Owen P. Effects of glucose, insulin and potassium infusion on tissue metabolic changes within first hour of myocardial infarction in the baboon. Circulation. 1975;52(1):49–57. doi: 10.1161/01.CIR.52.1.49.
    1. Malmberg K, Ryden L, Efendic S, Herlitz J, Nicol P, Waldenstrom A, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J Am Coll Cardiol. 1995;26(1):57–65. doi: 10.1016/0735-1097(95)00126-K.
    1. Mehta SR, Yusuf S, Diaz R, Zhu J, Pais P, Xavier D, et al. Effect of glucose-insulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction: the CREATE-ECLA randomized controlled trial. JAMA. 2005;293(4):437–46. doi: 10.1001/jama.293.4.437.
    1. Timmer JR, Svilaas T, Ottervanger JP, Henriques JP, Dambrink JH, van den Broek SA, et al. Glucose-insulin-potassium infusion in patients with acute myocardial infarction without signs of heart failure: the Glucose-Insulin-Potassium Study (GIPS)-II. J Am Coll Cardiol. 2006;47(8):1730–1. doi: 10.1016/j.jacc.2006.01.040.
    1. Oliver MF, Opie LH. Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias. Lancet. 1994;343(8890):155–8. doi: 10.1016/S0140-6736(94)90939-3.
    1. Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group. BMJ. 1997;314(7093):1512–5. doi: 10.1136/bmj.314.7093.1512.
    1. Apstein CS. Glucose-insulin-potassium for acute myocardial infarction: remarkable results from a new prospective, randomized trial. Circulation. 1998;98(21):2223–6. doi: 10.1161/01.CIR.98.21.2223.
    1. van der Horst IC, Zijlstra F. van 't Hof AW, Doggen CJ, de Boer MJ, Suryapranata H et al. Glucose-insulin-potassium infusion inpatients treated with primary angioplasty for acute myocardial infarction: the glucose-insulin-potassium study: a randomized trial. J Am Coll Cardiol. 2003;42(5):784–91. doi: 10.1016/S0735-1097(03)00830-1.
    1. Selker HP, Beshansky JR, Sheehan PR, Massaro JM, Griffith JL, D'Agostino RB, et al. Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the IMMEDIATE randomized controlled trial. JAMA. 2012;307(18):1925–33. doi: 10.1001/jama.2012.426.
    1. Grossman AN, Opie LH, Beshansky JR, Ingwall JS, Rackley CE, Selker HP. Glucose-insulin-potassium revived: current status in acute coronary syndromes and the energy-depleted heart. Circulation. 2013;127(9):1040–8. doi: 10.1161/CIRCULATIONAHA.112.130625.
    1. Addo TA, Keeley EC, Cigarroa JE, Lange RA, de Lemos JA, Dobbins RL, et al. Effect of glucose-insulin-potassium infusion on plasma free fatty acid concentrations in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction. Am J Cardiol. 2004;94(10):1288–9. doi: 10.1016/j.amjcard.2004.07.115.
    1. Chaudhuri A, Janicke D, Wilson MF, Tripathy D, Garg R, Bandyopadhyay A, et al. Anti-inflammatory and profibrinolytic effect of insulin in acute ST-segment-elevation myocardial infarction. Circulation. 2004;109(7):849–54. doi: 10.1161/01.CIR.0000116762.77804.FC.
    1. Spagnoli LG, Bonanno E, Sangiorgi G, Mauriello A. Role of inflammation in atherosclerosis. J Nucl Med. 2007;48(11):1800–15. doi: 10.2967/jnumed.107.038661.
    1. Sano T, Tanaka A, Namba M, Nishibori Y, Nishida Y, Kawarabayashi T, et al. C-reactive protein and lesion morphology in patients with acute myocardial infarction. Circulation. 2003;108(3):282–5. doi: 10.1161/01.CIR.0000079173.84669.4F.
    1. Pietila K, Harmoinen A, Hermens W, Simoons ML, Van de Werf F, Verstraete M. Serum C-reactive protein and infarct size in myocardial infarct patients with a closed versus an open infarct-related coronary artery after thrombolytic therapy. Eur Heart J. 1993;14(7):915–9. doi: 10.1093/eurheartj/14.7.915.
    1. Anzai T, Yoshikawa T, Shiraki H, Asakura Y, Akaishi M, Mitamura H, et al. C-reactive protein as a predictor of infarct expansion and cardiac rupture after a first Q-wave acute myocardial infarction. Circulation. 1997;96(3):778–84. doi: 10.1161/01.CIR.96.3.778.
    1. Pietila KO, Harmoinen AP, Jokiniitty J, Pasternack AI. Serum C-reactive protein concentration in acute myocardial infarction and its relationship to mortality during 24 months of follow-up in patients under thrombolytic treatment. Eur Heart J. 1996;17(9):1345–9. doi: 10.1093/oxfordjournals.eurheartj.a015068.
    1. Andreotti F, Hackett DR, Haider AW, Roncaglioni MC, Davies GJ, Beacham JL, et al. Von Willebrand factor, plasminogen activator inhibitor-1 and C-reactive protein are markers of thrombolytic efficacy in acute myocardial infarction. Thromb Haemost. 1992;68(6):678–82.
    1. Armstrong EJ, Morrow DA, Sabatine MS. Inflammatory biomarkers in acute coronary syndromes: part II: acute-phase reactants and biomarkers of endothelial cell activation. Circulation. 2006;113(7):e152–5. doi: 10.1161/CIRCULATIONAHA.105.595538.
    1. Parikh SV, Abdullah SM, Keeley EC, Cigarroa JE, Addo TA, Warner JJ, et al. Effect of glucose-insulin-potassium (GIK) infusion on biomarkers of cardiovascular risk in ST elevation myocardial infarction (STEMI): insight into the failure of GIK. Diab Vasc Dis Res. 2007;4(3):222–5. doi: 10.3132/dvdr.2007.043.
    1. Hashemian MVA, Akaberi A. Effect of glucose–insulin–potassium on Plasma concentrations of C-reactive protein in acute ST- Elevation Myocardial Infarction; A Randomized Clinical Trial. Pak J Med Sci. 2011;27(3):4.
    1. Hombach V, Grebe O, Merkle N, Waldenmaier S, Hoher M, Kochs M, et al. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J. 2005;26(6):549–57. doi: 10.1093/eurheartj/ehi147.
    1. Lagrand WK, Visser CA, Hermens WT, Niessen HW, Verheugt FW, Wolbink GJ, et al. C-reactive protein as a cardiovascular risk factor: more than an epiphenomenon? Circulation. 1999;100(1):96–102. doi: 10.1161/01.CIR.100.1.96.
    1. Suleiman M, Khatib R, Agmon Y, Mahamid R, Boulos M, Kapeliovich M, et al. Early inflammation and risk of long-term development of heart failure and mortality in survivors of acute myocardial infarction predictive role of C-reactive protein. J Am Coll Cardiol. 2006;47(5):962–8. doi: 10.1016/j.jacc.2005.10.055.
    1. Ohlmann P, Jaquemin L, Morel O, El Behlgiti R, Faure A, Michotey MO, et al. Prognostic value of C-reactive protein and cardiac troponin I in primary percutaneous interventions for ST-elevation myocardial infarction. Am Heart J. 2006;152(6):1161–7. doi: 10.1016/j.ahj.2006.07.016.
    1. Haase J, Bayar R, Hackenbroch M, Storger H, Hofmann M, Schwarz CE, et al. Relationship between size of myocardial infarctions assessed by delayed contrast-enhanced MRI after primary PCI, biochemical markers, and time to intervention. J Interv Cardiol. 2004;17(6):367–73. doi: 10.1111/j.1540-8183.2004.04078.x.
    1. Orn S, Manhenke C, Ueland T, Damas JK, Mollnes TE, Edvardsen T, et al. C-reactive protein, infarct size, microvascular obstruction, and left-ventricular remodelling following acute myocardial infarction. Eur Heart J. 2009;30(10):1180–6. doi: 10.1093/eurheartj/ehp070.
    1. Gruzdeva O, Uchasova E, Dyleva Y, Belik E, Shurygina E, Barbarash O. Insulin resistance and inflammation markers in myocardial infarction. J Inflamm Res. 2013;6:83–90.
    1. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101(15):1767–72. doi: 10.1161/01.CIR.101.15.1767.

Source: PubMed

3
Subskrybuj