How to test for phasic modulation of neural and behavioural responses

Benedikt Zoefel, Matthew H Davis, Giancarlo Valente, Lars Riecke, Benedikt Zoefel, Matthew H Davis, Giancarlo Valente, Lars Riecke

Abstract

Research on whether perception or other processes depend on the phase of neural oscillations is rapidly gaining popularity. However, it is unknown which methods are optimally suited to evaluate the hypothesized phase effect. Using a simulation approach, we here test the ability of different methods to detect such an effect on dichotomous (e.g., "hit" vs "miss") and continuous (e.g., scalp potentials) response variables. We manipulated parameters that characterise the phase effect or define the experimental approach to test for this effect. For each parameter combination and response variable, we identified an optimal method. We found that methods regressing single-trial responses on circular (sine and cosine) predictors perform best for all of the simulated parameters, regardless of the nature of the response variable (dichotomous or continuous). In sum, our study lays a foundation for optimized experimental designs and analyses in future studies investigating the role of phase for neural and behavioural responses. We provide MATLAB code for the statistical methods tested.

Keywords: EEG; MEG; Neural oscillations; Phase; Simulations; tACS.

Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Modelling the phase effect. A. Definition of neural parameters. The vertical axis represents the average response (e.g., proportion of hits for a dichotomous response variable, average scalp potential for a continuous response variable) at each simulated phase. This corresponds to model(phase) in Section 2.1.1. B. Simulated values for neural parameters. These parameters produce different effect shapes that can be sinusoidal (total width = 100%, asymmetry = 0) or not. Note that effect size is identical for all of the blue curves shown. For one exemplary combination of asymmetry and total width, all possible effect sizes are shown in brown.
Fig. 2
Fig. 2
Illustration of statistical methods. A. Data from 20 virtual participants in one experiment for a given combination of (neural and experimental) parameters and a dichotomous response variable. Note that the preferred phase (the phase yielding the maximum response) differs across participants. B-D. Statistical methods that were included in the present study, divided into three categories. For all methods, the single-subject measure of the hypothesized phase effect is visualized and/or described based on data from one exemplary subject. If methods divide data into phase bins, these are shown with circles. For alignment-based methods (B), the bin used for alignment is shown as an open circle. For all methods, p-values shown were obtained for the group level, by applying the respective method to the data shown in A. The panel illustrating method ITC (D, 3) depicts phase distributions for hit and miss trials (observed data and surrogate distribution). See Section 2.2 for further details.
Fig. 3
Fig. 3
Highest possible sensitivity to detect phase effects (i.e. highest d-prime among all methods tested; color-coded) separately for all experimental parameters tested and for the three method categories. Values were averaged across all neural parameters before maximal sensitivity was determined. The confidence intervals of all sensitivities shown are in the range d’±0.12 to d’±0.16 (not shown).
Fig. 4
Fig. 4
Sensitivity of the selected parametric alignment-based and parametric regression-based methods to detect phase effects, for various combinations of Nbins, study design, and effect size. Results were averaged across Ntrials as this parameter did not affect the identity of the winning methods. Effect size corresponds to a peak-to-peak modulation of performance for a sinusoidal shape (total width = 100%, asymmetry = 0). Note that MAX-ADJ is not defined for 4 phase bins, and MAX-OPP VS MIN OPP AV is not defined for 4 and 6 phase bins. Confidence intervals are shown by shaded areas – note that these are often too narrow to be visible.
Fig. 5
Fig. 5
Sensitivity of the selected permutation-based and parametric regression-based methods to detect phase effects. Other conventions as in Fig. 4.
Fig. 6
Fig. 6
Highest possible sensitivity to detect phase effects, separately for all neural parameters and the three method categories tested. The confidence intervals of all sensitivities shown are in the range d’±0.02 (for low effect sizes) to d’±0.12 (for high effect sizes).
Fig. 7
Fig. 7
Sensitivity of the selected parametric alignment-based methods to detect phase effects, for combinations of Nbins, total width, and effect size. The black line shows the average sensitivity for LOG REGRESS FISHER and LOG REGRESS PERM which performed equally well. For other conventions, see caption of Fig. 4.
Fig. 8
Fig. 8
A. Highest possible sensitivity to detect the phasic modulation of a continuous response variable, separately for different experimental parameters. Note that overall sensitivity (across all parameters) is not comparable with that for the dichotomous response variable (Fig. 3), as it depends on the parameters that characterise the distribution from which single-trial responses are chosen (see Materials and Methods). B,C. Sensitivities separately for the selected parametric alignment-based (B), parametric regression-based (B,C) and permutation-based methods (C) for various simulated parameters (cf. Fig. 4, Fig. 5). Note that LIN REGRESS FISHER, LIN REGRESS PERM, and CIRC-LIN CORR overlap for all parameter combinations shown in panel C. For all other conventions, see caption of Fig. 4.
Fig. 9
Fig. 9
Highest possible sensitivity (i.e. highest d-prime among all methods) for split-data methods and other approaches. Results are shown for simulated experiments of 384 trials each (using other Ntrials did not change results) and the dichotomous response variable. Sensitivity was averaged across all other parameter combinations before maximal sensitivity was determined. “Split-data”: The dataset was split, with one part used to identify the preferred phase (the percentage of data used for this purpose is indicated), the other to test for actual phase effects across all phase bins. “Full dataset”: The preferred phase was estimated in the same dataset that is used to test for phase effects, but the phase bin used for alignment was excluded from the test (i.e. the standard alignment-based approach in this paper). “Known beforehand”: The preferred phase was known beforehand (in our case, estimated in another independent dataset of 384 trials) and used to test for phase effects across all phase bins without the necessity of data exclusion. The remaining 2 bars show equivalent sensitivity of the winning methods in the other two categories. Error bars show the upper limits of 95% confidence intervals.

References

    1. Ai L., Ro T. The phase of prestimulus alpha oscillations affects tactile perception. J. Neurophysiol. 2014;111:1300–1307. doi: 10.1152/jn.00125.2013.
    1. Allefeld C., Görgen K., Haynes J.-D. Valid population inference for information-based imaging: from the second-level t-test to prevalence inference. Neuroimage. 2016;141:378–392. doi: 10.1016/j.neuroimage.2016.07.040.
    1. Asamoah B., Khatoun A., Mc Laughlin M. Analytical bias accounts for some of the reported effects of tACS on auditory perception. Brain Stimul. 2019;12:1001–1009. doi: 10.1016/j.brs.2019.03.011.
    1. Baumgarten T.J., Schnitzler A., Lange J. Beta oscillations define discrete perceptual cycles in the somatosensory domain. Proc. Natl. Acad. Sci. U.S.A. 2015;112:12187–12192. doi: 10.1073/pnas.1501438112.
    1. Benedetto A., Lozano-Soldevilla D., VanRullen R. Different responses of spontaneous and stimulus-related alpha activity to ambient luminance changes. Eur. J. Neurosci. 2018;48:2599–2608. doi: 10.1111/ejn.13791.
    1. Benedetto A., Spinelli D., Morrone M.C. Rhythmic modulation of visual contrast discrimination triggered by action. Proc. Biol. Sci. 2016;283 doi: 10.1098/rspb.2016.0692.
    1. Benwell C.S.Y., London R.E., Tagliabue C.F., Veniero D., Gross J., Keitel C., Thut G. Frequency and power of human alpha oscillations drift systematically with time-on-task. Neuroimage. 2019;192:101–114. doi: 10.1016/j.neuroimage.2019.02.067.
    1. Busch N.A., Dubois J., VanRullen R. The phase of ongoing EEG oscillations predicts visual perception. J. Neurosci. 2009;29:7869–7876. doi: 10.1523/JNEUROSCI.0113-09.2009.
    1. Busch N.A., VanRullen R. Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc. Natl. Acad. Sci. U.S.A. 2010;107:16048–16053. doi: 10.1073/pnas.1004801107.
    1. Buzsáki G., Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–1929. doi: 10.1126/science.1099745.
    1. Chakravarthi R., Vanrullen R. Conscious updating is a rhythmic process. Proc. Natl. Acad. Sci. U.S.A. 2012;109:10599–10604. doi: 10.1073/pnas.1121622109.
    1. Cole S., Voytek B. Cycle-by-cycle analysis of neural oscillations. J. Neurophysiol. 2019 doi: 10.1152/jn.00273.2019.
    1. Cole S.R., Voytek B. Brain oscillations and the importance of waveform shape. Trends Cogn. Sci. 2017;21:137–149. doi: 10.1016/j.tics.2016.12.008.
    1. de Cheveigné A., Arzounian D. Scanning for oscillations. J. Neural Eng. 2015;12 doi: 10.1088/1741-2560/12/6/066020.
    1. de Cheveigné A., Nelken I. Filters: when, why, and how (not) to use them. Neuron. 2019;102:280–293. doi: 10.1016/j.neuron.2019.02.039.
    1. de Cheveigné A., Parra L.C. Joint decorrelation, a versatile tool for multichannel data analysis. Neuroimage. 2014;98:487–505. doi: 10.1016/j.neuroimage.2014.05.068.
    1. Doelling K.B., Assaneo M.F., Bevilacqua D., Pesaran B., Poeppel D. An oscillator model better predicts cortical entrainment to music. Proc. Natl. Acad. Sci. 2019 doi: 10.1073/pnas.1816414116. 201816414.
    1. Dugué L., Marque P., VanRullen R. The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J. Neurosci. 2011;31:11889–11893. doi: 10.1523/JNEUROSCI.1161-11.2011.
    1. Eliav T., Geva-Sagiv M., Yartsev M.M., Finkelstein A., Rubin A., Las L., Ulanovsky N. Nonoscillatory phase coding and synchronization in the bat hippocampal formation. Cell. 2018;175:1119–1130. doi: 10.1016/j.cell.2018.09.017. e15.
    1. Fiebelkorn I.C., Saalmann Y.B., Kastner S. Rhythmic sampling within and between objects despite sustained attention at a cued location. Curr. Biol. 2013;23:2553–2558. doi: 10.1016/j.cub.2013.10.063.
    1. Fisher R.A. eleventh ed. 1950. Statistical Methods for Research Workers. Oliver and Boyd.
    1. Gilron R., Rosenblatt J., Koyejo O., Poldrack R.A., Mukamel R. What’s in a pattern? Examining the type of signal multivariate analysis uncovers at the group level. NeuroImage. 2017;146:113–120. doi: 10.1016/j.neuroimage.2016.11.019.
    1. Good P.I. third ed. Springer Series in Statistics. Springer; New York: 2005. Permutation, Parametric, and Bootstrap Tests of Hypotheses.
    1. Gundlach C., Müller M.M., Nierhaus T., Villringer A., Sehm B. Phasic modulation of human somatosensory perception by transcranially applied oscillating currents. Brain Stimul. 2016;9:712–719. doi: 10.1016/j.brs.2016.04.014.
    1. Haller M., Donoghue T., Peterson E., Varma P., Sebastian P., Gao R., Noto T., Knight R.T., Shestyuk A., Voytek B. 2018. Parameterizing Neural Power Spectra. bioRxiv 299859.
    1. Hanslmayr S., Volberg G., Wimber M., Dalal S.S., Greenlee M.W. Prestimulus oscillatory phase at 7 Hz gates cortical information flow and visual perception. Curr. Biol. 2013;23:2273–2278. doi: 10.1016/j.cub.2013.09.020.
    1. Harris A.M., Dux P.E., Mattingley J.B. Detecting unattended stimuli depends on the phase of prestimulus neural oscillations. J. Neurosci. 2018;38:3092–3101. doi: 10.1523/JNEUROSCI.3006-17.2018.
    1. Henry M.J., Herrmann B., Obleser J. Entrained neural oscillations in multiple frequency bands comodulate behavior. Proc. Natl. Acad. Sci. U.S.A. 2014;111:14935–14940. doi: 10.1073/pnas.1408741111.
    1. Henry M.J., Obleser J. Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proc. Natl. Acad. Sci. U.S.A. 2012;109:20095–20100. doi: 10.1073/pnas.1213390109.
    1. Herrmann C.S., Rach S., Neuling T., Strüber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 2013;7:279. doi: 10.3389/fnhum.2013.00279.
    1. Hickok G., Farahbod H., Saberi K. The rhythm of perception: entrainment to acoustic rhythms induces subsequent perceptual oscillation. Psychol. Sci. 2015;26:1006–1013. doi: 10.1177/0956797615576533.
    1. Jesteadt W. The variance of d′ estimates obtained in yes—no and two-interval forced choice procedures. Percept. Psychophys. 2005;67:72–80. doi: 10.3758/BF03195013.
    1. Jones S.R. When brain rhythms aren’t ‘rhythmic’: implication for their mechanisms and meaning. Curr. Opin. Neurobiol. Syst. Neurosci. 2016;40:72–80. doi: 10.1016/j.conb.2016.06.010.
    1. Kayser C. Evidence for the rhythmic perceptual sampling of auditory scenes. 2019. bioRxiv 618652.
    1. Kayser C., Wilson C., Safaai H., Sakata S., Panzeri S. Rhythmic auditory cortex activity at multiple timescales shapes stimulus–response gain and background firing. J. Neurosci. 2015;35:7750–7762. doi: 10.1523/JNEUROSCI.0268-15.2015.
    1. Kayser S.J., McNair S.W., Kayser C. Prestimulus influences on auditory perception from sensory representations and decision processes. Proc. Natl. Acad. Sci. 2016;113:4842–4847. doi: 10.1073/pnas.1524087113.
    1. Keitel C., Thut G., Gross J. Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation. Neuroimage. 2017;146:58–70. doi: 10.1016/j.neuroimage.2016.11.043.
    1. Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012;16:606–617. doi: 10.1016/j.tics.2012.10.007.
    1. Krause M.R., Vieira P.G., Csorba B.A., Pilly P.K., Pack C.C. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc. Natl. Acad. Sci. 2019;116:5747–5755. doi: 10.1073/pnas.1815958116.
    1. Lafon B., Henin S., Huang Y., Friedman D., Melloni L., Thesen T., Doyle W., Buzsáki G., Devinsky O., Parra L.C., A Liu A. Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nat. Commun. 2017;8:1199. doi: 10.1038/s41467-017-01045-x.
    1. Lakatos P., Shah A.S., Knuth K.H., Ulbert I., Karmos G., Schroeder C.E. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 2005;94:1904–1911. doi: 10.1152/jn.00263.2005.
    1. Landau A.N., Fries P. Attention samples stimuli rhythmically. Curr. Biol. 2012;22:1000–1004. doi: 10.1016/j.cub.2012.03.054.
    1. Ledgerwood A. The preregistration revolution needs to distinguish between predictions and analyses. Proc. Natl. Acad. Sci. 2018 doi: 10.1073/pnas.1812592115. 201812592.
    1. Leek M.R. Adaptive procedures in psychophysical research. Percept. Psychophys. 2001;63:1279–1292. doi: 10.3758/BF03194543.
    1. Liu L., Luo H. Behavioral oscillation in global/local processing: global alpha oscillations mediate global precedence effect. J. Vis. 2019;19 doi: 10.1167/19.5.12. 12–12.
    1. Lozano-Soldevilla D., ter Huurne N., Oostenveld R. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality. Front. Comput. Neurosci. 2016;10 doi: 10.3389/fncom.2016.00087.
    1. Madsen K.H., Karabanov A.N., Krohne L.G., Safeldt M.G., Tomasevic L., Siebner H.R. No trace of phase: corticomotor excitability is not tuned by phase of pericentral mu-rhythm. Brain Stimul. 2019 doi: 10.1016/j.brs.2019.05.005.
    1. Mathewson K.E., Gratton G., Fabiani M., Beck D.M., Ro T. To see or not to see: prestimulus alpha phase predicts visual awareness. J. Neurosci. 2009;29:2725–2732. doi: 10.1523/JNEUROSCI.3963-08.2009.
    1. Mathewson K.E., Prudhomme C., Fabiani M., Beck D.M., Lleras A., Gratton G. Making waves in the stream of consciousness: entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation. J. Cogn. Neurosci. 2012;24:2321–2333. doi: 10.1162/jocn_a_00288.
    1. McNair S.W., Kayser S.J., Kayser C. Consistent pre-stimulus influences on auditory perception across the lifespan. Neuroimage. 2019;186:22–32. doi: 10.1016/j.neuroimage.2018.10.085.
    1. Milton A., Pleydell-Pearce C.W. The phase of pre-stimulus alpha oscillations influences the visual perception of stimulus timing. Neuroimage. 2016;133:53–61. doi: 10.1016/j.neuroimage.2016.02.065.
    1. Neuling T., Rach S., Wagner S., Wolters C.H., Herrmann C.S. Good vibrations: oscillatory phase shapes perception. Neuroimage. 2012;63:771–778. doi: 10.1016/j.neuroimage.2012.07.024.
    1. Ng B.S.W., Schroeder T., Kayser C. A precluding but not ensuring role of entrained low-frequency oscillations for auditory perception. J. Neurosci. 2012;32:12268–12276. doi: 10.1523/JNEUROSCI.1877-12.2012.
    1. Nosek B.A., Ebersole C.R., DeHaven A.C., Mellor D.T. The preregistration revolution. Proc. Natl. Acad. Sci. 2018 doi: 10.1073/pnas.1708274114. 201708274.
    1. Peelle J.E., Davis M.H. Neural oscillations carry speech rhythm through to comprehension. Front. Psychol. 2012;3:320. doi: 10.3389/fpsyg.2012.00320.
    1. Raaijmakers J.G.W., Schrijnemakers J.M.C., Gremmen F. How to deal with “the language-as-fixed-effect fallacy”: common misconceptions and alternative solutions. J. Mem. Lang. 1999;41:416–426. doi: 10.1006/jmla.1999.2650.
    1. Riecke L., Formisano E., Herrmann C.S., Sack A.T. 4-Hz transcranial alternating current stimulation phase modulates hearing. Brain Stimul. 2015;8:777–783. doi: 10.1016/j.brs.2015.04.004.
    1. Riecke L., Formisano E., Sorger B., Başkent D., Gaudrain E. Neural entrainment to speech modulates speech intelligibility. Curr. Biol. 2018;28:161–169. doi: 10.1016/j.cub.2017.11.033. e5.
    1. Riecke L., Sack A.T., Schroeder C.E. Endogenous delta/theta sound-brain phase entrainment accelerates the buildup of auditory streaming. Curr. Biol. 2015;25:3196–3201. doi: 10.1016/j.cub.2015.10.045.
    1. Riecke L., Zoefel B. Conveying temporal information to the auditory system via transcranial current stimulation. Acta Acustica united Acustica. 2018;104:883–886. doi: 10.3813/AAA.919235.
    1. Romei V., Thut G., Silvanto J. Information-based approaches of noninvasive transcranial brain stimulation. Trends Neurosci. 2016;39:782–795. doi: 10.1016/j.tins.2016.09.001.
    1. Ronconi L., Oosterhof N.N., Bonmassar C., Melcher D. Multiple oscillatory rhythms determine the temporal organization of perception. Proc. Natl. Acad. Sci. U.S.A. 2017;114:13435–13440. doi: 10.1073/pnas.1714522114.
    1. Ruhnau P., Rufener K.S., Heinze H.-J., Zaehle T. Sailing in a sea of disbelief: in vivo measurements of transcranial electric stimulation in human subcortical structures. Brain Stimul. 2018;11:241–243. doi: 10.1016/j.brs.2017.09.015.
    1. Ruzzoli M., Torralba M., Fernández L.M., Soto-Faraco S. The relevance of alpha phase in human perception. Cortex. 2019 doi: 10.1016/j.cortex.2019.05.012.
    1. Schaworonkow N., Nikulin V.V. Spatial neuronal synchronization and the waveform of oscillations: implications for EEG and MEG. PLoS Comput. Biol. 2019;15 doi: 10.1371/journal.pcbi.1007055.
    1. Schaworonkow N., Triesch J., Ziemann U., Zrenner C. EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities. Brain Stimul. 2019;12:110–118. doi: 10.1016/j.brs.2018.09.009.
    1. Spaak E., de Lange F.P., Jensen O. Local entrainment of α oscillations by visual stimuli causes cyclic modulation of perception. J. Neurosci. 2014;34:3536–3544. doi: 10.1523/JNEUROSCI.4385-13.2014.
    1. Stelzer J., Chen Y., Turner R. Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control. Neuroimage. 2013;65:69–82. doi: 10.1016/j.neuroimage.2012.09.063.
    1. Strauß A., Henry M.J., Scharinger M., Obleser J. Alpha phase determines successful lexical decision in noise. J. Neurosci. 2015;35:3256–3262. doi: 10.1523/JNEUROSCI.3357-14.2015.
    1. ten Oever S., Sack A.T. Oscillatory phase shapes syllable perception. Proc. Natl. Acad. Sci. U.S.A. 2015;112:15833–15837. doi: 10.1073/pnas.1517519112.
    1. Thut G., Bergmann T.O., Fröhlich F., Soekadar S.R., Brittain J.-S., Valero-Cabré A., Sack A.T., Miniussi C., Antal A., Siebner H.R., Ziemann U., Herrmann C.S. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin. Neurophysiol. 2017;128:843–857. doi: 10.1016/j.clinph.2017.01.003.
    1. Tomassini A., Ambrogioni L., Medendorp W.P., Maris E. Theta oscillations locked to intended actions rhythmically modulate perception. eLife. 2017;6 doi: 10.7554/eLife.25618.
    1. VanRullen R. How to evaluate phase differences between trial groups in ongoing electrophysiological signals. Front. Neurosci. 2016;10:426. doi: 10.3389/fnins.2016.00426.
    1. VanRullen R., Busch N.A., Drewes J., Dubois J. Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability. Front. Psychol. 2011;2 doi: 10.3389/fpsyg.2011.00060.
    1. VanRullen R., McLelland D. What goes up must come down: EEG phase modulates auditory perception in both directions. Front. Psychol. 2013;4 doi: 10.3389/fpsyg.2013.00016.
    1. Vöröslakos M., Takeuchi Y., Brinyiczki K., Zombori T., Oliva A., Fernández-Ruiz A., Kozák G., Kincses Z.T., Iványi B., Buzsáki G., Berényi A. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat. Commun. 2018;9:483. doi: 10.1038/s41467-018-02928-3.
    1. Watrous A.J., Miller J., Qasim S.E., Fried I., Jacobs J. Phase-tuned neuronal firing encodes human contextual representations for navigational goals. eLife. 2018;7 doi: 10.7554/eLife.32554.
    1. Widmann A., Schröger E., Maess B. Digital filter design for electrophysiological data--a practical approach. J. Neurosci. Methods. 2015;250:34–46. doi: 10.1016/j.jneumeth.2014.08.002.
    1. Wilsch A., Neuling T., Obleser J., Herrmann C.S. Transcranial alternating current stimulation with speech envelopes modulates speech comprehension. Neuroimage. 2018;172:766–774. doi: 10.1016/j.neuroimage.2018.01.038.
    1. Wutz A., Muschter E., van Koningsbruggen M.G., Weisz N., Melcher D. Temporal integration windows in neural processing and perception aligned to saccadic eye movements. Curr. Biol. 2016;26:1659–1668. doi: 10.1016/j.cub.2016.04.070.
    1. Zoefel B., Archer-Boyd A., Davis M.H. Phase entrainment of brain oscillations causally modulates neural responses to intelligible speech. Curr. Biol. 2018;28:401–408. doi: 10.1016/j.cub.2017.11.071. e5.
    1. Zoefel B., Davis M.H. Transcranial electric stimulation for the investigation of speech perception and comprehension. Lang. Cogn. Neurosci. 2017;32:910–923. doi: 10.1080/23273798.2016.1247970.
    1. Zoefel B., Heil P. Detection of near-threshold sounds is independent of EEG phase in common frequency bands. Front. Psychol. 2013;4:262. doi: 10.3389/fpsyg.2013.00262.
    1. Zoefel B., ten Oever S., Sack A.T. The involvement of endogenous neural oscillations in the processing of rhythmic input: more than a regular repetition of evoked neural responses. Front. Neurosci. 2018;12 doi: 10.3389/fnins.2018.00095.
    1. Zoefel B., VanRullen R. Oscillatory mechanisms of stimulus processing and selection in the visual and auditory systems: state-of-the-art, speculations and suggestions. Front. Neurosci. 2017;11 doi: 10.3389/fnins.2017.00296.
    1. Zoefel B., VanRullen R. Selective perceptual phase entrainment to speech rhythm in the absence of spectral energy fluctuations. J. Neurosci. 2015;35:1954–1964. doi: 10.1523/JNEUROSCI.3484-14.2015.

Source: PubMed

3
Subskrybuj