Prognostic value of the neutrophil-to-lymphocyte ratio in acute organophosphorus pesticide poisoning

Yuhang Mu, Boqi Hu, Nan Gao, Li Pang, Yuhang Mu, Boqi Hu, Nan Gao, Li Pang

Abstract

This study investigates the ability of blood neutrophil-to-lymphocyte ratio (NLR) to predict acute organophosphorus pesticide poisoning (AOPP). Clinical data of 385 patients with AOPP were obtained within 24 h of admission, and NLR values were calculated based on neutrophil and lymphocyte counts. The patients were divided into two groups - good and poor - based on prognosis. Poor prognosis included in-hospital death and severe poisoning. The factors affecting prognosis were analyzed by logistic regression analysis, and the prognostic value of NLR was evaluated using the area under the receiver operating characteristic curve (AUC). Univariate logistic regression analysis showed that NLR levels, serum cholinesterase, and creatinine levels were good predictors of AOPP. Multivariate logistic regression analysis showed that high NLR was an independent risk factor for severe poisoning (adjusted odds ratio [AOR], 1.13; 95% CI, 1.10-1.17; p < 0.05) and in-hospital mortality (AOR, 1.07; 95% CI, 1.03-1.11; p < 0.05). NLR values >13 and >17 had a moderate ability to predict severe poisoning and in-hospital mortality, respectively (AUC of 0.782 [95% CI, 0.74-0.824] and 0.714 [95% CI, 0.626-0.803], respectively). Our results show that high NLR at admission is an independent indicator of poor prognosis in AOPP and can be used to optimize treatment and manage patients.

Keywords: AOPP; NLR; prognosis; public health; risk factor.

Conflict of interest statement

Conflict of interest: The authors state no conflict of interest.

© 2021 Yuhang Mu et al., published by De Gruyter.

Figures

Figure 1
Figure 1
Patient selection.
Figure 2
Figure 2
Area under the receiver operating characteristic curve of the neutrophil-to-lymphocyte ratio (NLR) for predicting severe poisoning and in-hospital mortality. NLR with cutoff values.
Figure 3
Figure 3
Area under the receiver operating characteristic curve for severe poisoning (a) and death (b).

References

    1. Mew EJ, Padmanathan P, Konradsen F, Eddleston M, Chang SS, Phillips MR, et al. The global burden of fatal self-poisoning with pesticides 2006–15: systematic review. J Affect Disord. 2017;219:93–104. 10.1016/j.jad.2017.05.002.
    2. Mew EJ, Padmanathan P, Konradsen F, Eddleston M, Chang SS, Phillips MR. et al. The global burden of fatal self-poisoning with pesticides 2006–15: systematic review. J Affect Disord. 2017;219:93–104. doi: 10.1016/j.jad.2017.05.002.
    1. Wu X, Xie W, Cheng Y, Guan Q. Severity and prognosis of acute organophosphorus pesticide poisoning are indicated by C-reactive protein and copeptin levels and APACHE II score. Exp Ther Med. 2016;11(3):806–10. 10.3892/etm.2016.2982.
    2. Wu X, Xie W, Cheng Y, Guan Q. Severity and prognosis of acute organophosphorus pesticide poisoning are indicated by C-reactive protein and copeptin levels and APACHE II score. Exp Ther Med. 2016;11(3):806–10. doi: 10.3892/etm.2016.2982.
    1. Khosravani H, Shahpori R, Stelfox HT, Kirkpatrick AW, Laupland KB. Occurrence and adverse effect on outcome of hyperlactatemia in the critically ill. Crit Care. 2009;13(3):R90. 10.1186/cc7918.
    2. Khosravani H, Shahpori R, Stelfox HT, Kirkpatrick AW, Laupland KB. Occurrence and adverse effect on outcome of hyperlactatemia in the critically ill. Crit Care. 2009;13(3):R90. doi: 10.1186/cc7918.
    1. Tallat S, Hussien R, Mohamed RH, Abd El Wahab MB, Mahmoud M. Caspases as prognostic markers and mortality predictors in acute organophosphorus poisoning. J Genet Eng Biotechnol. 2020;18(1):10. 10.1186/s43141-020-00024-y.
    2. Tallat S, Hussien R, Mohamed RH, Abd El Wahab MB, Mahmoud M. Caspases as prognostic markers and mortality predictors in acute organophosphorus poisoning. J Genet Eng Biotechnol. 2020;18(1):10. doi: 10.1186/s43141-020-00024-y.
    1. Dungdung A, Kumar A, Kumar B, Preetam M, Tara RK, Saba MK. Correlation and prognostic significance of serum amylase, serum lipase, and plasma cholinesterase in acute organophosphorus poisoning. J Family Med Prim Care. 2020;9(4):1873–7. 10.4103/jfmpc.jfmpc_205_20.
    2. Dungdung A, Kumar A, Kumar B, Preetam M, Tara RK, Saba MK. Correlation and prognostic significance of serum amylase, serum lipase, and plasma cholinesterase in acute organophosphorus poisoning. J Family Med Prim Care. 2020;9(4):1873–7. doi: 10.4103/jfmpc.jfmpc_205_20.
    1. Dong N, Liu J, Wang Z, Gao N, Pang L, Xing J. Development of a practical prediction scoring system for severe acute organophosphate poisoning. J Appl Toxicol. 2020;40(7):889–96. 10.1002/jat.3950.
    2. Dong N, Liu J, Wang Z, Gao N, Pang L, Xing J. Development of a practical prediction scoring system for severe acute organophosphate poisoning. J Appl Toxicol. 2020;40(7):889–96. doi: 10.1002/jat.3950.
    1. Yuan S, Gao Y, Ji W, Song J, Mei X. The evaluation of acute physiology and chronic health evaluation II score, poisoning severity score, sequential organ failure assessment score combine with lactate to assess the prognosis of the patients with acute organophosphate pesticide poisoning. Medicine (Baltimore). 2018;97(21):e10862. 10.1097/MD.0000000000010862.
    2. Yuan S, Gao Y, Ji W, Song J, Mei X. The evaluation of acute physiology and chronic health evaluation II score, poisoning severity score, sequential organ failure assessment score combine with lactate to assess the prognosis of the patients with acute organophosphate pesticide poisoning. Medicine (Baltimore) 2018;97(21):e10862. doi: 10.1097/MD.0000000000010862.
    1. Farooqui WA, Uddin M, Qadeer R, Shafique K. Trajectories of vital status parameters and risk of mortality among acute organophosphorus poisoning patients – a latent class growth analysis. BMC Public Health. 2020;20(1):1538. 10.1186/s12889-020-09637-x.
    2. Farooqui WA, Uddin M, Qadeer R, Shafique K. Trajectories of vital status parameters and risk of mortality among acute organophosphorus poisoning patients – a latent class growth analysis. BMC Public Health. 2020;20(1):1538. doi: 10.1186/s12889-020-09637-x.
    1. Akilli NB, Yortanli M, Mutlu H, Gunaydin YK, Koylu R, Akca HS, et al. Prognostic importance of neutrophil-lymphocyte ratio in critically ill patients: short- and long-term outcomes. Am J Emerg Med. 2014;32(12):1476–80. 10.1016/j.ajem.2014.09.001.
    2. Akilli NB, Yortanli M, Mutlu H, Gunaydin YK, Koylu R, Akca HS. et al. Prognostic importance of neutrophil-lymphocyte ratio in critically ill patients: short- and long-term outcomes. Am J Emerg Med. 2014;32(12):1476–80. doi: 10.1016/j.ajem.2014.09.001.
    1. Afari ME, Bhat T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: an update. Expert Rev Cardiovasc Ther. 2016;14(5):573–7. 10.1586/14779072.2016.1154788.
    2. Afari ME, Bhat T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: an update. Expert Rev Cardiovasc Ther. 2016;14(5):573–7. doi: 10.1586/14779072.2016.1154788.
    1. Luo Y, Xia LX, Li ZL, Pi DF, Tan XP, Tu Q. Early neutrophil-to-lymphocyte ratio is a prognostic marker in acute minor stroke or transient ischemic attack. Acta Neurol Belg. 2020. 10.1007/s13760-020-01289-3.
    2. Luo Y, Xia LX, Li ZL, Pi DF, Tan XP, Tu Q. Early neutrophil-to-lymphocyte ratio is a prognostic marker in acute minor stroke or transient ischemic attack. Acta Neurol Belg. 2020 doi: 10.1007/s13760-020-01289-3.
    1. Ying HQ, Deng QW, He BS, Pan YQ, Wang F, Sun HL, et al. The prognostic value of preoperative NLR, d-NLR, PLR and LMR for predicting clinical outcome in surgical colorectal cancer patients. Med Oncol. 2014;31(12):305. 10.1007/s12032-014-0305-0.
    2. Ying HQ, Deng QW, He BS, Pan YQ, Wang F, Sun HL. et al. The prognostic value of preoperative NLR, d-NLR, PLR and LMR for predicting clinical outcome in surgical colorectal cancer patients. Med Oncol. 2014;31(12):305. doi: 10.1007/s12032-014-0305-0.
    1. Omichi K, Cloyd JM, Yamashita S, Tzeng CD, Conrad C, Chun YS, et al. Neutrophil-to-lymphocyte ratio predicts prognosis after neoadjuvant chemotherapy and resection of intrahepatic cholangiocarcinoma. Surgery. 2017;162(4):752–65. 10.1016/j.surg.2017.05.015.
    2. Omichi K, Cloyd JM, Yamashita S, Tzeng CD, Conrad C, Chun YS. et al. Neutrophil-to-lymphocyte ratio predicts prognosis after neoadjuvant chemotherapy and resection of intrahepatic cholangiocarcinoma. Surgery. 2017;162(4):752–65. doi: 10.1016/j.surg.2017.05.015.
    1. Mandaliya H, Jones M, Oldmeadow C, Nordman II. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI). Transl Lung Cancer Res. 2019;8(6):886–94. 10.21037/tlcr.2019.11.16.
    2. Mandaliya H, Jones M, Oldmeadow C, Nordman II. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI) Transl Lung Cancer Res. 2019;8(6):886–94. doi: 10.21037/tlcr.2019.11.16.
    1. Eddleston M, Buckley NA, Eyer P, Dawson AH. Management of acute organophosphorus pesticide poisoning. Lancet. 2008;371(9612):597–607. 10.1016/S0140-6736(07)61202-1.
    2. Eddleston M, Buckley NA, Eyer P, Dawson AH. Management of acute organophosphorus pesticide poisoning. Lancet. 2008;371(9612):597–607. doi: 10.1016/S0140-6736(07)61202-1.
    1. Eddleston M. Patterns and problems of deliberate self-poisoning in the developing world. QJM. 2000;93(11):715–31. 10.1093/qjmed/93.11.715.
    2. Eddleston M. Patterns and problems of deliberate self-poisoning in the developing world. QJM. 2000;93(11):715–31. doi: 10.1093/qjmed/93.11.715.
    1. Eddleston M. Novel clinical toxicology and pharmacology of organophosphorus insecticide self-poisoning. Annu Rev Pharmacol Toxicol. 2019;59:341–60. 10.1146/annurev-pharmtox-010818-021842.
    2. Eddleston M. Novel clinical toxicology and pharmacology of organophosphorus insecticide self-poisoning. Annu Rev Pharmacol Toxicol. 2019;59:341–60. doi: 10.1146/annurev-pharmtox-010818-021842.
    1. Vale A. Organophosphorus insecticide poisoning. BMJ Clin Evid. 2015;2015:2102.
    2. Vale A. Organophosphorus insecticide poisoning. BMJ Clin Evid. 2015;2015:2102.
    1. Nomura K, Narimatsu E, Inoue H, Kyan R, Sawamoto K, Uemura S, et al. Mechanism of central hypopnoea induced by organic phosphorus poisoning. Sci Rep. 2020;10(1):15834. 10.1038/s41598-020-73003-5.
    2. Nomura K, Narimatsu E, Inoue H, Kyan R, Sawamoto K, Uemura S. et al. Mechanism of central hypopnoea induced by organic phosphorus poisoning. Sci Rep. 2020;10(1):15834. doi: 10.1038/s41598-020-73003-5.
    1. Naughton SX, Terry AV Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology. 2018;408:101–12. 10.1016/j.tox.2018.08.011.
    2. Naughton SX, Terry AV Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology. 2018;408:101–12. doi: 10.1016/j.tox.2018.08.011.
    1. Chen KX, Zhou XH, Sun CA, Yan PX. Manifestations of and risk factors for acute myocardial injury after acute organophosphorus pesticide poisoning. Medicine (Baltimore). 2019;98(6):e14371. 10.1097/MD.0000000000014371.
    2. Chen KX, Zhou XH, Sun CA, Yan PX. Manifestations of and risk factors for acute myocardial injury after acute organophosphorus pesticide poisoning. Medicine (Baltimore) 2019;98(6):e14371. doi: 10.1097/MD.0000000000014371.
    1. Karami-Mohajeri S, Abdollahi M. Mitochondrial dysfunction and organophosphorus compounds. Toxicol Appl Pharmacol. 2013;270(1):39–44. 10.1016/j.taap.2013.04.001.
    2. Karami-Mohajeri S, Abdollahi M. Mitochondrial dysfunction and organophosphorus compounds. Toxicol Appl Pharmacol. 2013;270(1):39–44. doi: 10.1016/j.taap.2013.04.001.
    1. Binukumar BK, Bal A, Kandimalla R, Sunkaria A, Gill KD. Mitochondrial energy metabolism impairment and liver dysfunction following chronic exposure to dichlorvos. Toxicology. 2010;270(2–3):77–84. 10.1016/j.tox.2010.01.017.
    2. Binukumar BK, Bal A, Kandimalla R, Sunkaria A, Gill KD. Mitochondrial energy metabolism impairment and liver dysfunction following chronic exposure to dichlorvos. Toxicology. 2010;270(2–3):77–84. doi: 10.1016/j.tox.2010.01.017.
    1. Hou YX, Liu SW, Wang LW, Wu SH. Physiopathology of multiple organ dysfunctions in severely monocrotophos-poisoned rabbits. Chem Biol Interact. 2017;278:9–14. 10.1016/j.cbi.2017.08.016.
    2. Hou YX, Liu SW, Wang LW, Wu SH. Physiopathology of multiple organ dysfunctions in severely monocrotophos-poisoned rabbits. Chem Biol Interact. 2017;278:9–14. doi: 10.1016/j.cbi.2017.08.016.
    1. Sumathi ME, Kumar SH, Shashidhar KN, Takkalaki N. Prognostic significance of various biochemical parameters in acute organophosphorus poisoning. Toxicol Int. 2014;21(2):167–71. 10.4103/0971-6580.139800.
    2. Sumathi ME, Kumar SH, Shashidhar KN, Takkalaki N. Prognostic significance of various biochemical parameters in acute organophosphorus poisoning. Toxicol Int. 2014;21(2):167–71. doi: 10.4103/0971-6580.139800.
    1. Erfantalab P, Soltaninejad K, Shadnia S, Zamani N, Hassanian-Moghaddam H, Mahdavinejad A, et al. Trend of blood lactate level in acute aluminum phosphide poisoning. World J Emerg Med. 2017;8(2):116–20. 10.5847/wjem.j.1920-8642.2017.02.006.
    2. Erfantalab P, Soltaninejad K, Shadnia S, Zamani N, Hassanian-Moghaddam H, Mahdavinejad A. et al. Trend of blood lactate level in acute aluminum phosphide poisoning. World J Emerg Med. 2017;8(2):116–20. doi: 10.5847/wjem.j.1920-8642.2017.02.006.
    1. Gamage R, Wagnon I, Rossetti I, Childs R, Niedermayer G, Chesworth R, et al. Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front Cell Neurosci. 2020;14:577–912. 10.3389/fncel.2020.577912.
    2. Gamage R, Wagnon I, Rossetti I, Childs R, Niedermayer G, Chesworth R. et al. Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front Cell Neurosci. 2020;14:577–912. doi: 10.3389/fncel.2020.577912.
    1. Gunduz E, Dursun R, Icer M, Zengin Y, Gullu MN, Durgun HM, et al. Factors affecting mortality in patients with organophosphate poisoning. J Pak Med Assoc. 2015;65(9):967–72.
    2. Gunduz E, Dursun R, Icer M, Zengin Y, Gullu MN, Durgun HM. et al. Factors affecting mortality in patients with organophosphate poisoning. J Pak Med Assoc. 2015;65(9):967–72.
    1. Jokanovic M. Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: a review. Toxicology. 2018;410:125–31. 10.1016/j.tox.2018.09.009.
    2. Jokanovic M. Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: a review. Toxicology. 2018;410:125–31. doi: 10.1016/j.tox.2018.09.009.
    1. Moore MM, Chua W, Charles KA, Clarke SJ. Inflammation and cancer: causes and consequences. Clin Pharmacol Ther. 2010;87(4):504–8. 10.1038/clpt.2009.254.
    2. Moore MM, Chua W, Charles KA, Clarke SJ. Inflammation and cancer: causes and consequences. Clin Pharmacol Ther. 2010;87(4):504–8. doi: 10.1038/clpt.2009.254.
    1. Roxburgh CS, McMillan DC. Role of systemic inflammatory response in predicting survival in patients with primary operable cancer. Future Oncol. 2010;6(1):149–63. 10.2217/fon.09.136.
    2. Roxburgh CS, McMillan DC. Role of systemic inflammatory response in predicting survival in patients with primary operable cancer. Future Oncol. 2010;6(1):149–63. doi: 10.2217/fon.09.136.
    1. Dundar ZD, Ergin M, Koylu R, Ozer R, Cander B, Gunaydin YK. Neutrophil-lymphocyte ratio in patients with pesticide poisoning. J Emerg Med. 2014;47(3):286–93. 10.1016/j.jemermed.2014.01.034.
    2. Dundar ZD, Ergin M, Koylu R, Ozer R, Cander B, Gunaydin YK. Neutrophil-lymphocyte ratio in patients with pesticide poisoning. J Emerg Med. 2014;47(3):286–93. doi: 10.1016/j.jemermed.2014.01.034.

Source: PubMed

3
Subskrybuj