Biometry and visual function of a healthy cohort in Leipzig, Germany

Maria Teresa Zocher, Jos J Rozema, Nicole Oertel, Jens Dawczynski, Peter Wiedemann, Franziska G Rauscher, EVICR.net, Maria Teresa Zocher, Jos J Rozema, Nicole Oertel, Jens Dawczynski, Peter Wiedemann, Franziska G Rauscher, EVICR.net

Abstract

Background: Cross-sectional survey of ocular biometry and visual function in healthy eyes across the life span of a German population aged 20 to 69 years (n = 218). Subject number in percent per age category reflected the percentage within the respective age band of the population of Leipzig, Germany.

Methods: Measurements obtained: subjective and objective refraction, best-corrected visual acuity, accommodation, contrast sensitivity, topography and pachymetry with Scheimpflug camera, axial length with non-contact partial coherence interferometry, and spectral-domain optical coherence tomography of the retina. Pearson correlation coefficients with corresponding p-values were given to present interrelationships between stature, biometric and refractive parameters or their associations with age. Two-sample T-tests were used to calculate gender differences. The area under the logarithmic contrast sensitivity function (AULCSF) was calculated for the analysis of contrast sensitivity as a single figure across a range of spatial frequencies.

Results: The results of axial length (AL), anterior chamber depth (ACD) and anterior chamber volume (ACV) differed as a function of the age of the participants (rho (p value): AL -0.19 (0.006), ACD -0.56 (< 0.001), ACV-0.52 (< 0.001)). Longer eyes had deeper ACD (AL:ACD 0.62 (< 0.001), greater ACV (AL:ACV 0.65 (< 0.001) and steeper corneal radii (AL:R1ant; R2ant; R1post; R2post 0.40; 0.35; 0.36; 0.36 (all with (< 0.001)). Spherical equivalent was associated with age (towards hyperopia: 0.34 (< 0.001)), AL (-0.66 (< 0.001)), ACD (-0.52 (< 0.001)) and ACV (-0.46 (< 0.001)). Accommodation was found lower for older subjects (negative association with age, r = -0.82 (< 0.001)) and contrast sensitivity presented with smaller values for older ages (AULCSF -0.38, (< 0.001)), no change of retinal thickness with age. 58 % of the study cohort presented with a change of refractive correction above ±0.50 D in one or both eyes (64 % of these were habitual spectacle wearers), need for improvement was present in the young age-group and for older subjects with increasing age.

Conclusion: Biometrical data of healthy German eyes, stratified by age, gender and refractive status, enabled cross-comparison of all parameters, providing an important reference database for future patient-based research and specific in-depth investigations of biometric data in epidemiological research.

Trial registration: ClinicalTrials.gov # NCT01173614 July 28, 2010.

Keywords: Cross section; Dioptric distance; Gullstrand; Ocular biometry; Visual function.

Figures

Fig. 1
Fig. 1
“Spherical equivalent by age of subject (n = 218)”. Caption: Scatterplot of age and spherical equivalent for subjective refraction. In the study population there was weak association between age and subjective refractive error (r = 0.335, p < 0.001). Regression equation: Spherical equivalent = −3.03 + 0.054 Age; 50 % confidence interval: 1.96 D
Fig. 2
Fig. 2
“Contrast sensitivity measured with the Visual Contrast Test System chart and its association with age”. Caption: Contrast sensitivity for all age groups: ● 20–29 years; x 30–39 years; □ 40–49 years; + 50–50 years; ∆ 60–69 years. Gratings examined consisted of spatial frequencies of 1.5, 3, 6, 12 and 18 cycles per degree
Fig. 3
Fig. 3
“Contrast sensitivity results for different spatial frequencies stratefied by refractive status”. Caption: Contrast sensitivity for the three refractive states, stratified by spherical equivalent of subjective refraction determined by best corrected visual acuity: ● myopia; x emmetropia; □hyperopia. Gratings examined consisted of spatial frequencies of 1.5, 3, 6, 12 and 18 cycles per degree

References

    1. Fisher RF. Presbyopia and the changes with age in the human crystalline lens. J Physiol. 1973;228:765–79. doi: 10.1113/jphysiol.1973.sp010111.
    1. Wong TY, Foster PJ, Ng TP, Tielsch JM, Johnson GJ, Seah SKL. Variations in ocular biometry in an adult Chinese population in Singapore: The Tanjong Pagar Survey. Invest Ophthalmol Vis Sci. 2001;42:73–80.
    1. Atchison DA, Markwell EL, Kasthurirangan S, Pope JM, Smith G, Swann PG. Age-related changes in optical and biometric characteristics of emmetropic eyes. J Vision. 2008;8:1–20. doi: 10.1167/8.4.29.
    1. Lim LS, Saw SM, Jeganathan VSE, Tay WT, Aung T, Tong L, Mitchell P, Wong TY. Distribution and determinants of ocular biometric parameters in an Asian population: The Singapore Malay eye study. Invest Ophthalmol Vis Sci. 2010;51:103–9. doi: 10.1167/iovs.09-3553.
    1. Dandona R, Dandona L, Srinivas M, Giridhar P, McCarty CA, Rao GN. Population-based assessment of refractive error in India: The Andhra Pradesh eye disease study. Clin Exp Ophthalmol. 2002;30:84–93. doi: 10.1046/j.1442-6404.2002.00492.x.
    1. Nirmalan PK, Tielsch JM, Katz J, Thulasiraj RD, Krishnadas R, Ramakrishnan R, Robin AL. Relationship between vision impairment and eye disease to vision – specific quality of life and function in rural India: The Aravind comprehensive eye survey. Invest Ophthalmol Vis Sci. 2005;46:2308–12. doi: 10.1167/iovs.04-0830.
    1. Wu HM, Gupta A, Newland HS, Selva D, Aung T, Casson RJ. Association between stature, ocular biometry and refraction in an adult population in rural Myanmar: The Meiktila eye study. Clin Experiment Ophthalmol. 2007;35:834–9. doi: 10.1111/j.1442-9071.2007.01638.x.
    1. Shah SP, Jadoon MZ, Dineen B, Bourne RRA, Johnson GJ, Gilbert CE, Khan MD. Refractive errors in the Pakistani population: The National blindness and visual impairment survey. Ophthalmic Epidemiol. 2008;15:183–90. doi: 10.1080/09286580802105822.
    1. Jonas JB, Xu L, Wang YX. The Beijing eye study. Acta Ophthalmol. 2009;87:247–61. doi: 10.1111/j.1755-3768.2008.01385.x.
    1. Vingerling JR, Dielemans I, Hofman A, Grobbee DE, Hijmering M, Kramer CFL, de Jong PTVM. The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology. 1995;102:205–10. doi: 10.1016/S0161-6420(95)31034-2.
    1. Wolfs RCV, Klaver CC, Vingerling JR, Grobbee DE, Hofman A, de Jong PTVM. Distribution of central corneal thickness and its association with intraocular pressure: The Rotterdam Study. Am J Ophthalmol. 1997;123:767–72. doi: 10.1016/S0002-9394(14)71125-0.
    1. Bertelsen G, Erke MG, von Hanno T, Mathiesen EB, Peto T, Sjolie AK, Njolstad I. The Tromso Eye Study. Study design, methodolgy and results on visual acuity and refractive errors. Acta Ophthalmol. 2013;91:635–42. doi: 10.1111/j.1755-3768.2012.02511.x.
    1. Mirshahi A, Ponto KA, Hoehn R, Wild PS, Pfeiffer N. Ophthalmological aspects of the Gutenberg Health Study (GHS): an interdisciplinary prospective population-based cohort study. Ophthalmologe. 2013;110:210–7. doi: 10.1007/s00347-012-2666-0.
    1. Korb CA, Kottler UB, Wolfram C, Hoehn R, Schulz A, Zwiener I, Wild PS, Pfeiffer N, Mirshahi A. Prevalence of age-related macular degeneration in a large European cohort: Results from the population-based Gutenberg Health Study. Graefes Arch Clin Exp Ophthalmol. 2014;252:1403–11. doi: 10.1007/s00417-014-2591-9.
    1. Foster PJ, Broadway DC, Hayat S, Luben R, Dalzell N, Bingham S, Wareham NJ, Khaw KT. Refractive error, axial length and anterior chamber depth of the eye in British adults: the EPIC-Norfolk Eye Study. Br J Ophthalmol. 2010;94:827–30. doi: 10.1136/bjo.2009.163899.
    1. Jongenelen S, Rozema JJ, Tassignon MJ, & Project Gullstrand Study Group Distribution of the crystalline lens power in vivo as a function of age. Invest Ophthalmol Vis Sci. 2015;56:7029–35. doi: 10.1167/iovs.15-18047.
    1. Rozema JJ, Tassignon MJ, & Project Gullstrand Study Group The Bigaussian nature of ocular biometry. Optom Vis Sci. 2014;91:713–22. doi: 10.1097/OPX.0000000000000296.
    1. Stadt Leipzig, Amt für Statistik und Wahlen. Statistisches Jahrbuch 2011. Stadt Leipzig, Amt für Statistik und Wahlen. 2011;Band 42: 24 (Table 208).
    1. Mangione CM, Berry S, Spritzer K, Janz NK, Klein R, Owsley C, Lee PP. Identifying the content area for the 51-item national eye institute visual function questionnaire: results from focus groups with visually impaired persons. Arch Ophthalmol. 1998;116:227–33.
    1. Mangione CM, Lee PP, Gutierrez PP, Spritzer K, Hays RD. Development of the 25-item national eye institute visual function questionnaire. Arch Ophthalmol. 2001;119:1050–8. doi: 10.1001/archopht.119.7.1050.
    1. Williams MA, Moutray TN, Jackson AJ. Uniformity of visual acuity measures in published studies. Invest Ophthalmol Vis Sci. 2008;49:4321–7. doi: 10.1167/iovs.07-0511.
    1. Early Treatment Diabetic Retinopathy Study Research Group Classification of diabetic retinopathy from fluorescein angiograms. ETDRS report number 11. Ophthalmology. 1991;98(5 Suppl):807–22.
    1. Diepes H, Blendowske R. Optik und Technik der Brille. Druckhaus Beltz, Hemsbach. Chapter. 2005;21:473–510.
    1. Wold JE, Hu A, Chen S, Glasser A. Subjective and objective measurement of human accomodative amplitude. J Cataract Refract Surg. 2003;29:1878–88. doi: 10.1016/S0886-3350(03)00667-9.
    1. Ip JM, Huynh SC, Kifley A, Rose KA, Morgan IG, Varma R, Mitchell P. Variation of the contribution from axial length and other oculometric parameters to refraction by age and ethnicity. Invest Ophthalmol Vis Sci. 2007;48:4846–53. doi: 10.1167/iovs.07-0101.
    1. Haigis W, Lege B, Miller N, Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol. 2000;238:765–73. doi: 10.1007/s004170000188.
    1. He M, Wang D, Zheng Y, Zhang J, Yin Q, Huang W, Mackey DA, Foster PJ. Heritability of anterior chamber depth as an intermediate phenotype of angle-closure in Chinese: The Guangzhou Twin Eye Study. Invest Ophthalmol Vis Sci. 2008;49:81–6. doi: 10.1167/iovs.07-1052.
    1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA. Optical coherence tomography. Science. 1991;254:1178–81. doi: 10.1126/science.1957169.
    1. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995;113:325–32. doi: 10.1001/archopht.1995.01100030081025.
    1. Fercher AF, Drexler W, Hitzenberger CK, Lasse T. Optical coherence tomography-principles and applications. Rep Prog Phys. 2003;66:239–303. doi: 10.1088/0034-4885/66/2/204.
    1. Williams DR. Imaging single cells in the living retina. Vision Res. 2011;51:1379–96. doi: 10.1016/j.visres.2011.05.002.
    1. Gilchrist WG. Statistical modelling with quantile functions. London: Chapman Hall/CRC; 2000. Validation, Chapter 10; p. 224.
    1. Taylor R. Interpretation of the correlation coefficient: a basic review. J Diagn Med Sonogr. 1990;1:35–9. doi: 10.1177/875647939000600106.
    1. Bühl Achim . SPSS 22: Einführung in die moderne Datenanalyse. Berlin: Pearson Deutschland GmbH; 2014.
    1. Kim EA, Koo YJ, Han YB. Contrast sensitivity changes in patients with diabetic retinopathy. J Korean Ophthalmol Soc. 1995;36:1523–8.
    1. Applegate RA, Howland HC, Sharp RP, Cottingham AJ, Yee RW. Corneal aberrations and visual performance after radial keratotomy. J Refract Surg. 1998;14:397–407.
    1. Marcos S. Aberration and visual performance following standard laser vision correction. J Refract Surg. 2001;17:596–601.
    1. Harris WF. Power vectors versus power matrices, and the mathematical nature of dioptric power. Optom Vis Sci. 2007;84:1060–3. doi: 10.1097/OPX.0b013e318157acbb.
    1. Arditi A, Cagenello R. On the statistical reliability of letter-chart visual acuity measurements. Invest Ophthalmol Vis Sci. 1993;34:120–9.
    1. Bailey IL, Bullimore MA, Raasch TW, Taylor HR. Clinical grading and the effects of scaling. Invest Ophthalmol Vis Sci. 1991;32:422–32.
    1. Rosser DA, Cousens SN, Murdoch IE, Fitzke FW, Laidlaw DAH. How Sensitive to Clinical Change are ETDRS logMAR Visual Acuity Measurements? Invest Ophthalmol Vis Sci. 2003;44:3278–81. doi: 10.1167/iovs.02-1100.
    1. Chakraborty R, Read SA, Collins MJ. Diurnal variations in ocular aberrations of human eyes. Curr Eye Res. 2014;39:271–81. doi: 10.3109/02713683.2013.841257.
    1. Raasch TW. Spherocylindrical refractive errors and visual acuity. Optom Vis Sci. 1995;72:272–5. doi: 10.1097/00006324-199504000-00008.
    1. Calossi A. Corneal asphericity and spherical aberration. J Refract Surg. 2007;23:505–14.
    1. Thiagalingam S, Cumming RG, Mitchell P. Factors associated with undercorrected refractive errors in an older population: the Blue Mountains Eye Study. Br J Ophthalmol. 2002;86:1041–5. doi: 10.1136/bjo.86.9.1041.
    1. Wolfram C, Hoehn R, Kottler U, Wild P, Blettner M, Buehren J, Pfeiffer N, Mirshahi A. Prevalence of refractive errors in the European adult population: the Gutenberg Health Study (GHS) Br J Ophthalmol. 2014;98:857–61. doi: 10.1136/bjophthalmol-2013-304228.
    1. Eysteinsson T, Jonasson F, Arnarsson A, Sasaki H, Sasaki K. Relationships between ocular dimensions and adult stature among participants in the Reykjavik Eye Study. Acta Ophthalmol Scand. 2005;83:734–8. doi: 10.1111/j.1600-0420.2005.00540.x.
    1. Lee KE, Klein BEK, Klein R, Quandt Z, Wong TY. Age stature and education associations with ocular dimensions in an older white population. Arch Ophthalmol. 2009;127:88–93. doi: 10.1001/archophthalmol.2008.521.
    1. Roy A, Kar M, Mandal D, Ray RS, Kar C. Variation of axial ocular dimensions with age, sex, height, BMI- and their relation to refractive status. J Clin Diagn Res. 2015;9:AC01–4.
    1. Shufelt C, Fraser-Bell S, Ying-Lai M, Torres M, Varma R, The Los Angeles Latino Eye Study . Refractive error, ocular biometry, and lens opalescence in an adult population: The Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci. 2005;46:4450–60. doi: 10.1167/iovs.05-0435.
    1. He M, Huang W, Li Y, Zheng Y, Yin Q, Foster PJ. Refractive error and biometry in older Chinese adults: The Liwan Eye Study. Invest Ophthalmol Vis Sci. 2009;50:5130–6. doi: 10.1167/iovs.09-3455.
    1. Olsen T, Arnarsson A, Sasaki H, Jonasson F. On the ocular refractive components: The Reykjavik Study. Acta Ophthalmol. 2007;85:361–6. doi: 10.1111/j.1600-0420.2006.00847.x.
    1. Asgari S, Hashemi H, Mehravaran S, Khabazkhoob M, Emamian MH, Jafarzadehpur E, Shariati M, Fotouhi A. Corneal refractive power and eccentricity in the 40- to 64-year-old population of Shahroud, Iran. Cornea. 2013;32:25–9. doi: 10.1097/ICO.0b013e31824d0e40.
    1. Sicam VADP, Dubbelman M, van der Heijde RGL. Spherical aberration of the anterior and posterior surfaces of the human cornea. J Opt Soc Am A. 2006;23:544–9. doi: 10.1364/JOSAA.23.000544.
    1. Kuzmanovic Elabjer B, Petrinovic-Doresic J, Duric M, Busìc M, Elabjer E. Cross-sectional Study of ocular optical components interactions in emmetropes. Coll Antropol. 2007;31:743–9.
    1. Rozema JJ, Atchison DA, Tassignon MJ. Statistical eye model for normal eyes. Invest Ophthalmol Vis Sci. 2011;52:4525–33. doi: 10.1167/iovs.10-6705.
    1. Lam AK, Chan R, Pang PC. The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster. Ophthalmic Physiol Opt. 2001;21:477–83. doi: 10.1046/j.1475-1313.2001.00611.x.
    1. Santodomingo-Rubido J, Mallen EAH, Gilmartin B, Wolffsohn JS. A new non-contact optical device for ocular biometry. Br J Ophthalmol. 2002;86:458–62. doi: 10.1136/bjo.86.4.458.
    1. Sheng H, Bottjer CA, Bullimore MA. Ocular componenet measurement using the Zeiss IOLMaster. Optom Vis Sci. 2004;81:27–34. doi: 10.1097/00006324-200401000-00007.
    1. Klein BE, Klein R, Moss SE. Correlates of lens thickness: The Beaver Dam Eye Study. Invest Ophthalmol Vis Sci. 1998;39:1507–10.
    1. Utine CA, Altin F, Cakir H, Perente I. Comparison of anterior chamber depth measurements taken with the Pentacam, Orbscan IIz and IOLMaster in myopic and emmetropic eyes. Acta Ophthalmol. 2009;87:386–91. doi: 10.1111/j.1755-3768.2008.01278.x.
    1. Grover S, Murthy RK, Brar VS, Chalam KV. Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (Spectralis) Am J Ophthalmol. 2009;148:266–71. doi: 10.1016/j.ajo.2009.03.006.
    1. Grover S, Murthy RK, Brar VS, Chalam KV. Comparison of retinal thickness in normal eyes using Stratus and Spectralis optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:2644–7. doi: 10.1167/iovs.09-4774.
    1. Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, Weh E, Fischer W, Sulai Y, Dubra A, Carroll J. Race- and sex-related differences in retinal thickness and Foveal pit morphology. Invest Ophthalmol Vis Sci. 2011;52:625–34. doi: 10.1167/iovs.10-5886.
    1. Wolf-Schnurrbusch UEK, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, Enzmann V, Wolf S. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci. 2009;50:3432–7. doi: 10.1167/iovs.08-2970.
    1. Choovuthayakorn J, Laowong T, Watanachai N, Patikulsila D, Chaikitmongkol V. Spectral-domain optical coherence tomography of macula in myopia. Int Ophthalmol. 2015
    1. Patel PJ, Foster PJ, Grossi CM, Keane PA, Ko F, Lotery A, Peto T, Reisman CA, Strouthidis NG, Yang Q, on behalf of the UK Biobank Eyes and Vision Consortium Spectral-domain optical coherence tomography imaging in 67312 adults: associations with macular thickness in the UK Biobank Study. Ophthalmology. 2016;123:829–40. doi: 10.1016/j.ophtha.2015.11.009.
    1. Anton A, Andrada MT, Mayo A, Portela J, Merayo J. Epidemiology of refractive errors in an adult European population: The Segovia study. Ophthal Epidemiol. 2009;16:231–7. doi: 10.1080/09286580903000476.
    1. Williams KM, Verhoeven VJM, Cumberland P, Bertelsen G, Wolfram C, Buitendijk GHS, Hofman A, Duijn CM, Vingerling JR, Kuijpers RWAM, Hoehn R, Mirshahi A, Khawaja AP, Luben RN, Erke MG, von Hanno T, Mahroo O, Hogg R, Gieger C, Cougnard-Grégoire A, Anastasopoulos E, Bron A, Dartigues, Korobelnik J, Creuzot-Garcher C, Topouzis F, Delcourt C, Rahi J, Meitinger T, Fletcher A, Foster, Pfeiffer N, Klaver CCW, Hammond CJ. Prevalence of refractive error in Europe: the European eye epidemiology (E3) Consortium. Eur J Epidemiol. 2015;30:305–15. doi: 10.1007/s10654-015-0010-0.
    1. Saw SM, Tong L, Chua WH, Chia KS, Koh D, Tan DTH, Katz J. Incidence and progression of myopia in Singaporean school children. Invest Ophthalmol Vis Sci. 2005;46:51–7. doi: 10.1167/iovs.04-0565.
    1. Sun J, Zhou J, Zhao D, Lian J, Zhu H, Zhou Y, Sun Y, Wang Y, Zhao L, Wei Y, Wang L, Cun B, Ge S, Fan X. High prevelance of myopia and high myopia in 5060 Chinese university students in Shanghai. Invest Ophthalmol Vis Sci. 2012;53:7504–9. doi: 10.1167/iovs.11-8343.
    1. Mirshahi A, Ponto KA, Hoehn R, Zwiener I, Zeller T, Lackner K, Beutel ME, Pfeiffer N. Myopia and level of education. Ophthalmology. 2014;121:2047–52. doi: 10.1016/j.ophtha.2014.04.017.
    1. Bailey MD, Twa MD, Mitchell GL, Dhaliwal DK, Jones LA, McMahon TT. Repeatability of autorefraction and axial length measurements after laser in situ keratomileusis. J Refract Surg. 2005;31:1025–34. doi: 10.1016/j.jcrs.2004.12.040.
    1. Xu L, Li J, Cui T, Hu A, Zheng Y, Li Y, Sun B, Ma B, Jonas JB. Visual acuity in Northern China in an urban and rural population: The Beijing Eye Study. Br J Ophthalmol. 2005;89:1089–93. doi: 10.1136/bjo.2005.068429.
    1. Helmholtz Über die Akkommodation des Auges. Graefes Arch Ophthalmol. 1859;2:1–74. doi: 10.1007/BF02720789.
    1. Yuan Y, Shao Y, Tao A, Shen M, Wang J, Shi G, Chen Q, Zhu D, Lian Y, Qu J, Zhang Y, Lu F. Ocular anterior segment biometry and high-order wavefront aberrations during accommodation. Invest Ophthalmol Vis Sci. 2013;54:7028–37. doi: 10.1167/iovs.13-11893.
    1. Haughom B, Strand TE. Sine wave mesopic contrast – defining the normal range in a young population. Acta Ophthalmol. 2013;91:176–82. doi: 10.1111/j.1755-3768.2011.02323.x.
    1. Wachler BS, Krueger RR. Normalized contrast sensitivity values. J Refract Surg. 1998;14:463–6.
    1. Alfonso JF, Fernandez-Vega L, Baamonde MB, Montes-Mico R. Correlation of pupil size with visual acuity and contrast sensitivity after implantation of an apodized diffractive intraocular lens. J Refract Surg. 2007;33:430–8. doi: 10.1016/j.jcrs.2006.10.051.
    1. Hashemi H, Khabazkhoob M, Jafarzadehpur E, Emamian MH, Shariati M, Fotouhi A. Contrast sensitivity evaluation in a population-based study in Shahroud. Iran Ophthalmology. 2012;119:541–6. doi: 10.1016/j.ophtha.2011.08.030.
    1. Franco S, Silva AC, Carvalho AS, Macedo AS, Lira M. Comparison of the VCTS-6500 and the CSV-1000 tests for visual contrast sensitivity testing. Neurotoxicology. 2010;31:758–61. doi: 10.1016/j.neuro.2010.06.004.
    1. Hiraoka T, Okamoto C, Ishii Y, Kakita T, Oshika T. Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology. Invest Ophthalmol Vis Sci. 2007;48:550–6. doi: 10.1167/iovs.06-0914.
    1. Eppig T, Filser E, Goeppert H, Schroeder AC, Seitz B, Langenbucher A. Index of contrast sensitivity (ICS) in pseudophakic eyes with different intraocular lens designs. Acta Ophthalmol. 2015;93(3):e181–7. doi: 10.1111/aos.12538.
    1. Buehren J, Terzi E, Bach M, Wesemann W, Kohnen T. Measuring contrast sensitivity under different lighting conditions: comparison of three tests. Optom Vis Sci. 2006;83:290–8. doi: 10.1097/01.opx.0000216100.93302.2d.
    1. Hohberger B, Laemmer R, Adler W, Juenemann AG, Horn FK. Measuring contrast sensitivity in normal subjects with OPTEC® 6500: influence of age and glare. Graefes Arch Clin Exp Ophthalmol. 2007;245:1805–14. doi: 10.1007/s00417-007-0662-x.
    1. Wang CW, Chan CL, Jin HY. Psychometric properties of the Chinese version of the 25-item National Eye Institute Visual Function Questionnaire. Optom Vis Sci. 2008;85:1091–9. doi: 10.1097/OPX.0b013e31818b9f23.
    1. Globe D, Varma R, Azen SP, Paz S, Yu E, Preston-Martin S & Los Angeles Latino Eye Study Group Psychometric performance of the NEI VFQ-25 in visually normal latinos: The Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci. 2003;44:1470–8. doi: 10.1167/iovs.02-0292.
    1. Hirneiss C, Schmid-Tannwald C, Kernt M, Kampik A, Neubauer AS. The NEI VFQ-25 vision – related quality of life and prevalence of eye disease in a working population. Graefes ArchClin Exp Ophthalmol. 2010;248:85–92. doi: 10.1007/s00417-009-1186-3.
    1. Le Grand Y. Optiques physiologique – La dioptrique de l’optique de ceil et sa correction. Editions de la revue d´optique, Paris. 1952; 29–31.

Source: PubMed

3
Subskrybuj