Developmental Outcomes at 24 Months of Age in Toddlers Supplemented with Arachidonic Acid and Docosahexaenoic Acid: Results of a Double Blind Randomized, Controlled Trial

Angela M Devlin, Cecil M Y Chau, Roger Dyer, Julie Matheson, Deanna McCarthy, Karin Yurko-Mauro, Sheila M Innis, Ruth E Grunau, Angela M Devlin, Cecil M Y Chau, Roger Dyer, Julie Matheson, Deanna McCarthy, Karin Yurko-Mauro, Sheila M Innis, Ruth E Grunau

Abstract

Little is known about arachidonic acid (ARA) and docosahexaenoic acid (DHA) requirements in toddlers. A longitudinal, double blind, controlled trial in toddlers ( n = 133) age 13.4 ± 0.9 months (mean ± standard deviation), randomized to receive a DHA (200 mg/day) and ARA (200 mg/day) supplement (supplement) or a corn oil supplement (control) until age 24 months determined effects on neurodevelopment. We found no effect of the supplement on the Bayley Scales of Infant and Toddler Development 3rd Edition (Bayley-III) cognitive and language composites and Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI) at age 24 months. Supplemented toddlers had higher RBC phosphatidylcholine (PC), phosphatidylethanolamine (PE), and plasma DHA and ARA compared to placebo toddlers at age 24 months. A positive relationship between RBC PE ARA and Bayley III Cognitive composite (4.55 (0.21-9.00), B (95% CI), p = 0.045) in supplemented boys, but not in control boys, was observed in models adjusted for baseline fatty acid, maternal non-verbal intelligence, and BMI z-score at age 24 months. A similar positive relationship between RBC PE ARA and Bayley III Language composite was observed for supplemented boys (11.52 (5.10-17.94), p < 0.001) and girls (11.19 (4.69-17.68), p = 0.001). These findings suggest that increasing the ARA status in toddlers is associated with better neurodevelopment at age 24 months.

Keywords: arachidonic acid; docosahexaenoic acid; long chain polyunsaturated fatty acids; neurodevelopment; toddlers.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow chart illustrating the study subjects in the supplement and control group.
Figure 2
Figure 2
Relationship between RBC PE arachidonic acid (ARA) level and: (A) Bayley III cognitive composite scores; and (B) Bayley III language composite scores at age 24 months by supplement group and sex (supplement-treated girls (■); control-treated girls (□); supplement-treated boys (●); and control-treated boys (○).

References

    1. Carlson S.E., Colombo J. Docosahexaenoic acid and arachidonic acid nutrition in early development. Adv. Pediatr. 2016;63:453–471. doi: 10.1016/j.yapd.2016.04.011.
    1. Innis S.M. Impact of maternal diet on human milk composition and neurological development of infants. Am. J. Clin. Nutr. 2014;99:734S–741S. doi: 10.3945/ajcn.113.072595.
    1. Hadley B.K., Ryan S.A., Forsyth S., Gautier S., Salem N. The essentiality of arachidonic acid in infant development. Nutrients. 2016;8:216. doi: 10.3390/nu8040216.
    1. Martínez M., Mougan I. Fatty acid composition of human brain phospholipids during normal development. J. Neurochem. 1998;71:2528–2533. doi: 10.1046/j.1471-4159.1998.71062528.x.
    1. Arbuckle L.D., Innis S.M. Docosahexaenoic acid is transferred through maternal diet to milk and to tissues of natural milk-fed piglets. J. Nutr. 1993;123:1668–1675.
    1. Greiner R.C.S., Winter J., Nathanielsz P.W., Brenna J.T. Brain docosahexaenoate accretion in fetal baboons: Bioequivalence of dietary [alpha]-linolenic and docosahexaenoic acids. Pediatr. Res. 1997;42:826–834. doi: 10.1203/00006450-199712000-00018.
    1. Birch E.E., Carlson S.E., Hoffman D.R., Fitzgerald-Gustafson K.M., Fu V.L.N., Drover J.R., Castañeda Y.S., Minns L., Wheaton D.K.H., Mundy D., et al. The DIAMOND (DHA intake and measurement of neural development) study: A double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Am. J. Clin. Nutr. 2010;91:848–859. doi: 10.3945/ajcn.2009.28557.
    1. Colombo J., Carlson S.E., Cheatham C.L., Fitzgerald-Gustafson K.M., Kepler A., Doty T. Long-chain polyunsaturated fatty acid supplementation in infancy reduces heart rate and positively affects distribution of attention. Pediatr. Res. 2011;70:406–410. doi: 10.1203/PDR.0b013e31822a59f5.
    1. Drover J.R., Hoffman D.R., Castañeda Y.S., Morale S.E., Garfield S., Wheaton D.H., Birch E.E. Cognitive function in 18-month-old term infants of the DIAMOND study: A randomized, controlled clinical trial with multiple dietary levels of docosahexaenoic acid. Early Hum. Dev. 2011;87:223–230. doi: 10.1016/j.earlhumdev.2010.12.047.
    1. Colombo J., Carlson S.E., Cheatham C.L., Shaddy D.J., Kerling E.H., Thodosoff J.M., Gustafson K.M., Brez C. Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. Am. J. Clin. Nutr. 2013;98:403–412. doi: 10.3945/ajcn.112.040766.
    1. Willatts P., Forsyth S., Agostoni C., Casaer P., Riva E., Boehm G. Effects of long-chain PUFA supplementation in infant formula on cognitive function in later childhood. Am. J. Clin. Nutr. 2013;98:536S–542S. doi: 10.3945/ajcn.112.038612.
    1. Infant Feeding Working Group . In: Nutrition for Healthy Term Infants: Recommendations from Six to 24 Months. Health Canada, editor. Government of Canada; Ottawa, ON, Canada: 2014. Joint Statement of Health Canada, Canadian Pediatric Society, Dietitians of Canada, and Breastfeeding Committee for Canada.
    1. Minns L.M., Kerling E.H., Neely M.R., Sullivan D.K., Wampler J.L., Harris C.L., Berseth C.L., Carlson S.E. Toddler formula supplemented with docosahexaenoic acid (DHA) improves DHA status and respiratory health in a randomized, double-blind, controlled trial of us children less than 3 years of age. Prostaglandins Leukot. Essent. Fat. Acids. 2010;82:287–293. doi: 10.1016/j.plefa.2010.02.009.
    1. Food and Drug Administration Department of Health and Human Services . Agency Response Letter GRAS Notice No. GRN 000137. United States Government; College Park, MD, USA: 2004. [(accessed on 5 September 2017)]. Available online: .
    1. Streekstra H. On the safety of Mortierella alpina for the production of food ingredients, such as arachidonic acid. J. Biotechnol. 1997;56:153–165.
    1. Mulder K.A., King D.J., Innis S.M. Omega-3 fatty acid deficiency in infants before birth identified using a randomized trial of maternal DHA supplementation in pregnancy. PLoS ONE. 2014;9:e83764. doi: 10.1371/journal.pone.0083764.
    1. Williams P.L., Innis S.M. Food frequency questionnaire for assessing infant iron nutrition. Can. J. Diet. Pract. Res. 2005;66:176–182. doi: 10.3148/66.3.2005.176.
    1. Williams P.L., Innis S.M., Vogel A.M.P., Stephen L. Factors influencing infant feeding practices of mothers in Vancouver. Can. J. Public Health. 1999;90:114–119.
    1. Williams P.L., Innis S.M., Vogel A.M.P. Breastfeeding and weaning practices in Vancouver. Can. J. Public Health. 1996;87:231–236.
    1. Bayley N. Bayley Scales of Infant and Toddler Development. 3rd ed. Harcourt Assessment Inc.; San Antonio, TX, USA: 2006.
    1. Beery K.E., Beery N.A. The Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI) 5th ed. NCS Pearson Inc.; Minneapolis, MI, USA: 2004.
    1. Colombo J., Kannass K.N., Jill Shaddy D., Kundurthi S., Maikranz J.M., Anderson C.J., Blaga O.M., Carlson S.E. Maternal DHA and the development of attention in infancy and toddlerhood. Child Dev. 2004;75:1254–1267. doi: 10.1111/j.1467-8624.2004.00737.x.
    1. Kannass K.N., Colombo J., Carlson S.E. Maternal DHA levels and toddler free-play attention. Dev. Neuropsychol. 2009;34:159–174. doi: 10.1080/87565640802646734.
    1. Brown L., Sherbenou R.J., Johnsen S.K. Manual of Test of Nonverbal Intelligence. 3rd ed. PRO-ED; Austin, TX, USA: 1997.
    1. Alshweki A., Muñuzuri A.P., Baña A.M., de Castro M.J., Andrade F., Aldamiz-Echevarría L., de Pipaón M.S., Fraga J.M., Couce M.L. Effects of different arachidonic acid supplementation on psychomotor development in very preterm infants; a randomized controlled trial. Nutr. J. 2015;14:101. doi: 10.1186/s12937-015-0091-3.
    1. Henriksen C., Haugholt K., Lindgren M., Aurvåg A.K., Rønnestad A., Grønn M., Solberg R., Moen A., Nakstad B., Berge R.K., et al. Improved Cognitive Development Among Preterm Infants Attributable to Early Supplementation of Human Milk With Docosahexaenoic Acid and Arachidonic Acid. Pediatrics. 2008;121:1137–1145. doi: 10.1542/peds.2007-1511.
    1. Janssen C.I.F., Kiliaan A.J. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: The influence of lcpufa on neural development, aging, and neurodegeneration. Prog. Lipid Res. 2014;53:1–17. doi: 10.1016/j.plipres.2013.10.002.
    1. Lu H.-C., Mackie K. An introduction to the endogenous cannabinoid system. Biol. Psychiatr. 2016;79:516–525. doi: 10.1016/j.biopsych.2015.07.028.
    1. Artmann A., Petersen G., Hellgren L.I., Boberg J., Skonberg C., Nellemann C., Hansen S.H., Hansen H.S. Influence of dietary fatty acids on endocannabinoid and n-acylethanolamine levels in rat brain, liver and small intestine. BBA Mol. Cell Biol. Lipid. 2008;1781:200–212. doi: 10.1016/j.bbalip.2008.01.006.
    1. Hatanaka E., Harauma A., Yasuda H., Watanabe J., Nakamura M.T., Salem N., Jr., Moriguchi T. Essentiality of arachidonic acid intake in murine early development. Prostaglandin Leukot. Essent. Fat. Acids. 2016;108:51–57. doi: 10.1016/j.plefa.2016.03.007.
    1. Harauma A., Yasuda H., Hatanaka E., Nakamura M.T., Salem N., Jr., Moriguchi T. The essentiality of arachidonic acid in addition to docosahexaenoic acid for brain growth and function. Prostaglandin Leukot. Essent. Fat. Acids. 2017;116:9–18. doi: 10.1016/j.plefa.2016.11.002.
    1. Lauritzen L., Fewtrell M., Agostoni C. Dietary arachidonic acid in perinatal nutrition: A commentary. Pediatr. Res. 2015;77:263–269. doi: 10.1038/pr.2014.166.
    1. Makrides M., Gibson R.A., Udell T., Ried K. International LCPUFA Investigators. Supplementation of infant formula with long-chain polyunsaturated fatty acids does not influence the growth of term infants. Am. J. Clin. Nutr. 2005;81:1094–1101.
    1. Gould J.F., Smithers L.G., Makrides M. The effect of maternal omega-3 (n-3) LCPUFA supplementation during pregnancy on early childhood cognitive and visual development: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2013;97:531–544. doi: 10.3945/ajcn.112.045781.
    1. Liao K., McCandliss B.D., Carlson S.E., Colombo J., Shaddy D.J., Kerling E.H., Lepping R.J., Sittiprapaporn W., Cheatham C.L., Gustafson K.M. Event-related potential differences in children supplemented with long-chain polyunsaturated fatty acids during infancy. Dev. Sci. 2016 doi: 10.1111/desc.12455.
    1. Colombo J., Carlson S.E. Is the measure the message: The BSID and nutritional interventions. Pediatrics. 2012;129:1166–1167. doi: 10.1542/peds.2012-0934.
    1. Glaser C., Lattka E., Rzehak P., Steer C., Koletzko B. Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health. Matern. Child Nutr. 2011;7:27–40. doi: 10.1111/j.1740-8709.2011.00319.x.

Source: PubMed

3
Subskrybuj