Inflammation and Insulin Resistance as Risk Factors and Potential Therapeutic Targets for Alzheimer's Disease

Angeles Vinuesa, Carlos Pomilio, Amal Gregosa, Melisa Bentivegna, Jessica Presa, Melina Bellotto, Flavia Saravia, Juan Beauquis, Angeles Vinuesa, Carlos Pomilio, Amal Gregosa, Melisa Bentivegna, Jessica Presa, Melina Bellotto, Flavia Saravia, Juan Beauquis

Abstract

Overnutrition and modern diets containing high proportions of saturated fat are among the major factors contributing to a low-grade state of inflammation, hyperglycemia and dyslipidemia. In the last decades, the global rise of type 2 diabetes and obesity prevalence has elicited a great interest in understanding how changes in metabolic function lead to an increased risk for premature brain aging and the development of neurodegenerative disorders such as Alzheimer's disease (AD). Cognitive impairment and decreased neurogenic capacity could be a consequence of metabolic disturbances. In these scenarios, the interplay between inflammation and insulin resistance could represent a potential therapeutic target to prevent or ameliorate neurodegeneration and cognitive impairment. The present review aims to provide an update on the impact of metabolic stress pathways on AD with a focus on inflammation and insulin resistance as risk factors and therapeutic targets.

Keywords: Alzheimer’s disease; cognitive impairment; inflammation; insulin resistance; metabolic disorders; therapies.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Vinuesa, Pomilio, Gregosa, Bentivegna, Presa, Bellotto, Saravia and Beauquis.

Figures

FIGURE 1
FIGURE 1
Shared pathophysiological pathways and synergic burden of obesity-related disorders and Alzheimer’s disease.
FIGURE 2
FIGURE 2
Schematic representation of interacting components of the insulin signaling and inflammatory pathways on the brain. Pointed-head arrows depict activation and blunt-end arrows inhibition, while letter circles A-I point the level at which the potential therapeutic approaches discussed in this article would act. Treatment definition and corresponding reference section are defined in the inferior square.

References

    1. Aisen P. S., Schafer K. A., Grundman M., Pfeiffer E., Sano M., Davis K. L., et al. (2003). Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289 2819–2826. 10.1001/jama.289.21.2819
    1. Aleffi S., Petrai I., Bertolani C., Parola M., Colombatto S., Novo E., et al. (2005). Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology 42 1339–1348. 10.1002/hep.20965
    1. Alzheimer’s-Association. (2020). 2020 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia. The Journal of the Alzheimer’s Association.
    1. Arnold S. E., Arvanitakis Z., Macauley-Rambach S. L., Koenig A. M., Wang H. Y., Ahima R. S., et al. (2018). Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14 168–181. 10.1038/nrneurol.2017.185
    1. Aroda V. R. (2018). A review of GLP-1 receptor agonists: Evolution and advancement, through the lens of randomised controlled trials. Diabetes. Obes. Metab 20 (Suppl. 1), 22–33. 10.1111/dom.13162
    1. Assaf N., El-Shamarka M. E., Salem N. A., Khadrawy Y. A., El Sayed N. S. (2020). Neuroprotective effect of PPAR alpha and gamma agonists in a mouse model of amyloidogenesis through modulation of the Wnt/beta catenin pathway via targeting alpha- and beta-secretases. Prog Neuropsychopharmacol Biol Psychiatry 97 109793. 10.1016/j.pnpbp.2019.109793
    1. Assuncao N., Sudo F. K., Drummond C., De Felice F. G., Mattos P. (2018). Metabolic Syndrome and cognitive decline in the elderly: A systematic review. PLoS ONE 13 e0194990. 10.1371/journal.pone.0194990
    1. Aviles-Olmos I., Dickson J., Kefalopoulou Z., Djamshidian A., Kahan J., Ell P., et al. (2014). Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J Parkinsons Dis 4 337–344. 10.3233/jpd-140364
    1. Avinun R., Hariri A. R. (2019). A polygenic score for body mass index is associated with depressive symptoms via early life stress: Evidence for gene-environment correlation. J. Psychiatr. Res. 118 9–13. 10.1016/j.jpsychires.2019.08.008
    1. Baker L. D., Cross D. J., Minoshima S., Belongia D., Watson G. S., Craft S. (2011). Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch. Neurol. 68 51–57.
    1. Batista A. F., Forny-Germano L., Clarke J. R., Lyra E. S. N. M., Brito-Moreira J., Boehnke S. E., et al. (2018). The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease. J. Pathol. 245 85–100. 10.1002/path.5056
    1. Beauquis J., Homo-Delarche F., Giroix M. H., Ehses J., Coulaud J., Roig P., et al. (2010). Hippocampal neurovascular and hypothalamic-pituitary-adrenal axis alterations in spontaneously type 2 diabetic GK rats. Exp.Neurol. 222 125–134. 10.1016/j.expneurol.2009.12.022
    1. Beauquis J., Pomilio C., Vinuesa A., Pavía P., Galvan V., Saravia F. (2013). “Early astroglial and neuronal changes in the hippocampus of PDAPP-J20 transgenic mice, model of Alzheimer’s disease,” in Comunicación oral en la Reunión Anual de la Society for Neuroscience, noviembre 2013, (San Diego: ).
    1. Beauquis J., Saravia F., Coulaud J., Roig P., Dardenne M., Homo-Delarche F., et al. (2008). Prominently decreased hippocampal neurogenesis in a spontaneous model of type 1 diabetes, the nonobese diabetic mouse. Exp.Neurol. 210 359–367. 10.1016/j.expneurol.2007.11.009
    1. Becker E., Orellana Rios C. L., Lahmann C., Rucker G., Bauer J., Boeker M. (2018). Anxiety as a risk factor of Alzheimer’s disease and vascular dementia. Br. J. Psychiatry 213 654–660.
    1. Benedict C., Hallschmid M., Hatke A., Schultes B., Fehm H. L., Born J., et al. (2004). Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29 1326–1334. 10.1016/j.psyneuen.2004.04.003
    1. Benito-Leon J., Mitchell A. J., Hernandez-Gallego J., Bermejo-Pareja F. (2013). Obesity and impaired cognitive functioning in the elderly: a population-based cross-sectional study (NEDICES). Eur. J. Neurol. 20.
    1. Bethel M. A., Patel R. A., Merrill P., Lokhnygina Y., Buse J. B., Mentz R. J., et al. (2018). Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol 6 105–113.
    1. Biro F. M., Wien M. (2010). Childhood obesity and adult morbidities. Am.J.Clin.Nutr. 91 1499S–1505S.
    1. Bjorkhem I., Cedazo-Minguez A., Leoni V., Meaney S. (2009). Oxysterols and neurodegenerative diseases. Mol. Aspects Med. 30 171–179. 10.1016/j.mam.2009.02.001
    1. Blasko I., Beer R., Bigl M., Apelt J., Franz G., Rudzki D., et al. (2004). Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer’s disease beta-secretase (BACE-1). J Neural Transm (Vienna) 111 523–536. 10.1007/s00702-003-0095-6
    1. Blazquez E., Velazquez E., Hurtado-Carneiro V., Ruiz-Albusac J. M. (2014). Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol (Lausanne) 5 161.
    1. Boitard C., Etchamendy N., Sauvant J., Aubert A., Tronel S., Marighetto A., et al. (2012). Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice. Hippocampus 22 2095–2100. 10.1002/hipo.22032
    1. Bokulich N. A., Chung J., Battaglia T., Henderson N., Jay M., Li H., et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8 343ra382.
    1. Bomba M., Ciavardelli D., Silvestri E., Canzoniero L. M., Lattanzio R., Chiappini P., et al. (2013). Exenatide promotes cognitive enhancement and positive brain metabolic changes in PS1-KI mice but has no effects in 3xTg-AD animals. Cell Death Dis 4 e612. 10.1038/cddis.2013.139
    1. Bomba M., Granzotto A., Castelli V., Onofrj M., Lattanzio R., Cimini A., et al. (2019). Exenatide Reverts the High-Fat-Diet-Induced Impairment of BDNF Signaling and Inflammatory Response in an Animal Model of Alzheimer’s Disease. J. Alzheimers. Dis. 70 793–810. 10.3233/jad-190237
    1. Bonfili L., Cecarini V., Berardi S., Scarpona S., Suchodolski J. S., Nasuti C., et al. (2017). Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 7 2426.
    1. Bonfili L., Cecarini V., Cuccioloni M., Angeletti M., Berardi S., Scarpona S., et al. (2018). SLAB51 Probiotic Formulation Activates SIRT1 Pathway Promoting Antioxidant and Neuroprotective Effects in an AD Mouse Model. Mol. Neurobiol. 55 7987–8000. 10.1007/s12035-018-0973-4
    1. Boucher J., Kleinridders A., Kahn C. R. (2014). Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol 6.
    1. Bracke A., Domanska G., Bracke K., Harzsch S., Van Den Brandt J., Broker B., et al. (2019). Obesity Impairs Mobility and Adult Hippocampal Neurogenesis. J Exp Neurosci 13 1179069519883580.
    1. Bracko O., Vinarcsik L. K., Cruz Hernandez J. C., Ruiz-Uribe N. E., Haft-Javaherian M., Falkenhain K., et al. (2020). High fat diet worsens Alzheimer’s disease-related behavioral abnormalities and neuropathology in APP/PS1 mice, but not by synergistically decreasing cerebral blood flow. Sci Rep 10 9884.
    1. Brandhorst S., Choi I. Y., Wei M., Cheng C. W., Sedrakyan S., Navarrete G., et al. (2015). A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab 22 86–99. 10.1016/j.cmet.2015.05.012
    1. Bruce-Keller A. J., Keller J. N., Morrison C. D. (2009). Obesity and vulnerability of the CNS. Biochim. Biophys. Acta 1792 395–400.
    1. Bussler S., Penke M., Flemming G., Elhassan Y. S., Kratzsch J., Sergeyev E., et al. (2017). Novel Insights in the Metabolic Syndrome in Childhood and Adolescence. Horm Res Paediatr 88 181–193.
    1. Caccamo A., Maldonado M. A., Bokov A. F., Majumder S., Oddo S. (2010). CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 107 22687–22692. 10.1073/pnas.1012851108
    1. Cai H. Y., Holscher C., Yue X. H., Zhang S. X., Wang X. H., Qiao F., et al. (2014). Lixisenatide rescues spatial memory and synaptic plasticity from amyloid beta protein-induced impairments in rats. Neuroscience 277 6–13. 10.1016/j.neuroscience.2014.02.022
    1. Cai H. Y., Yang J. T., Wang Z. J., Zhang J., Yang W., Wu M. N., et al. (2018). Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun. 495 1034–1040. 10.1016/j.bbrc.2017.11.114
    1. Cani P. D., Bibiloni R., Knauf C., Waget A., Neyrinck A. M., Delzenne N. M., et al. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes Metab. Res. Rev 57 1470–1481. 10.2337/db07-1403
    1. Cantarella G., Di Benedetto G., Puzzo D., Privitera L., Loreto C., Saccone S., et al. (2015). Neutralization of TNFSF10 ameliorates functional outcome in a murine model of Alzheimer’s disease. Brain 138 203–216. 10.1093/brain/awu318
    1. Canton-Habas V., Rich-Ruiz M., Romero-Saldana M., Carrera-Gonzalez M. D. P. (2020). Depression as a Risk Factor for Dementia and Alzheimer’s Disease. Biomedicines 8.
    1. Carvalho B. M., Guadagnini D., Tsukumo D. M. L., Schenka A. A., Latuf-Filho P., Vassallo J., et al. (2012). Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55 2823–2834. 10.1007/s00125-012-2648-4
    1. Cavelti-Weder C., Babians-Brunner A., Keller C., Stahel M. A., Kurz-Levin M., Zayed H., et al. (2012). Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 35 1654–1662. 10.2337/dc11-2219
    1. Chappus-McCendie H., Chevalier L., Roberge C., Plourde M. (2019). Omega-3 PUFA metabolism and brain modifications during aging. Prog Neuropsychopharmacol Biol Psychiatry 94 109662. 10.1016/j.pnpbp.2019.109662
    1. Chavez J. A., Siddique M. M., Wang S. T., Ching J., Shayman J. A., Summers S. A. (2014). Ceramides and glucosylceramides are independent antagonists of insulin signaling. J. Biol. Chem. 289 723–734. 10.1074/jbc.m113.522847
    1. Chen D., Yang X., Yang J., Lai G., Yong T., Tang X., et al. (2017). Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis. Front Aging Neurosci 9 403.
    1. Chen J. L., Luo C., Pu D., Zhang G. Q., Zhao Y. X., Sun Y., et al. (2019). Metformin attenuates diabetes-induced tau hyperphosphorylation in vitro and in vivo by enhancing autophagic clearance. Exp. Neurol. 311 44–56. 10.1016/j.expneurol.2018.09.008
    1. Chen M., Huang N., Liu J., Huang J., Shi J., Jin F. (2020). AMPK: A bridge between diabetes mellitus and Alzheimer’s disease. Behav. Brain Res. 400 113043. 10.1016/j.bbr.2020.113043
    1. Chen X. H., Siman R., Iwata A., Meaney D. F., Trojanowski J. Q., Smith D. H. (2004). Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am. J. Pathol. 165 357–371. 10.1016/s0002-9440(10)63303-2
    1. Cho M. H., Cho K., Kang H. J., Jeon E. Y., Kim H. S., Kwon H. J., et al. (2014). Autophagy in microglia degrades extracellular beta-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy. 10 1761–1775. 10.4161/auto.29647
    1. Choi S. H., Bylykbashi E., Chatila Z. K., Lee S. W., Pulli B., Clemenson G. D., et al. (2018). Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361.
    1. Chu C. S., Tseng P. T., Stubbs B., Chen T. Y., Tang C. H., Li D. J., et al. (2018). Use of statins and the risk of dementia and mild cognitive impairment: A systematic review and meta-analysis. Sci Rep 8 5804.
    1. Chua L. M., Lim M. L., Chong P. R., Hu Z. P., Cheung N. S., Wong B. S. (2012). Impaired neuronal insulin signaling precedes Abeta42 accumulation in female AbetaPPsw/PS1DeltaE9 mice. J. Alzheimers. Dis. 29 783–791. 10.3233/jad-2012-111880
    1. Chuang Y. F., An Y., Bilgel M., Wong D. F., Troncoso J. C., O’brien R. J., et al. (2016). Midlife adiposity predicts earlier onset of Alzheimer’s dementia, neuropathology and presymptomatic cerebral amyloid accumulation. Mol. Psychiatry 21 910–915. 10.1038/mp.2015.129
    1. Claesson M. J., Jeffery I. B., Conde S., Power S. E., O’connor E. M., Cusack S., et al. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature 488 178–184.
    1. Claxton A., Baker L. D., Hanson A., Trittschuh E. H., Cholerton B., Morgan A., et al. (2015). Long Acting Intranasal Insulin Detemir Improves Cognition for Adults with Mild Cognitive Impairment or Early-Stage Alzheimer’s Disease Dementia. J. Alzheimers. Dis. 45 1269–1270. 10.3233/jad-159002
    1. Clelland C. D., Choi M., Romberg C., Clemenson G. D., Jr., Fragniere A., et al. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325 210–213. 10.1126/science.1173215
    1. Cohen E., Bieschke J., Perciavalle R. M., Kelly J. W., Dillin A. (2006). Opposing activities protect against age-onset proteotoxicity. Science 313 1604–1610. 10.1126/science.1124646
    1. Cope E. C., Lamarca E. A., Monari P. K., Olson L. B., Martinez S., Zych A. D., et al. (2018). Microglia Play an Active Role in Obesity-Associated Cognitive Decline. J. Neurosci. 38 8889–8904. 10.1523/jneurosci.0789-18.2018
    1. Craft S., Claxton A., Baker L. D., Hanson A. J., Cholerton B., Trittschuh E. H., et al. (2017). Effects of Regular and Long-Acting Insulin on Cognition and Alzheimer’s Disease Biomarkers: A Pilot Clinical Trial. J. Alzheimers. Dis. 57 1325–1334. 10.3233/jad-161256
    1. Dahl A., Hassing L. B., Fransson E., Berg S., Gatz M., Reynolds C. A., et al. (2010). Being overweight in midlife is associated with lower cognitive ability and steeper cognitive decline in late life. J. Gerontol. A Biol. Sci. Med. Sci. 65 57–62. 10.1093/gerona/glp035
    1. Dahl A. K., Hassing L. B. (2013). Obesity and cognitive aging. Epidemiol. Rev. 35 22–32. 10.1093/epirev/mxs002
    1. de Heer J., Rasmussen C., Coy D. H., Holst J. J. (2008). Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia 51 2263–2270. 10.1007/s00125-008-1149-y
    1. de la Monte S. M., Tong M. (2014). Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem. Pharmacol 88 548–559. 10.1016/j.bcp.2013.12.012
    1. De Sousa Rodrigues M. E., Houser M. C., Walker D. I., Jones D. P., Chang J., Barnum C. J., et al. (2019). Targeting soluble tumor necrosis factor as a potential intervention to lower risk for late-onset Alzheimer’s disease associated with obesity, metabolic syndrome, and type 2 diabetes. Alzheimers Res Ther 12 1. 10.1007/s11010-011-0917-z
    1. Deckers K., Van Boxtel M. P. J., Verhey F. R. J., Kohler S. (2017). Obesity and Cognitive Decline in Adults: Effect of Methodological Choices and Confounding by Age in a Longitudinal Study. J. Nutr. Health Aging 21 546–553. 10.1007/s12603-016-0757-3
    1. Derkach K. V., Ivantsov A. O., Chistyakova O. V., Sukhov I. B., Buzanakov D. M., Kulikova A. A., et al. (2017). Intranasal Insulin Restores Metabolic Parameters and Insulin Sensitivity in Rats with Metabolic Syndrome. Bull. Exp. Biol. Med. 163 184–189. 10.1007/s10517-017-3762-6
    1. Dey A., Hao S., Wosiski-Kuhn M., Stranahan A. M. (2017). Glucocorticoid-mediated activation of GSK3beta promotes tau phosphorylation and impairs memory in type 2 diabetes. Neurobiol. Aging 57 75–83. 10.1016/j.neurobiolaging.2017.05.010
    1. Dror E., Dalmas E., Meier D. T., Wueest S., Thevenet J., Thienel C., et al. (2017). Postprandial macrophage-derived IL-1beta stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat. Immunol. 18 283–292. 10.1038/ni.3659
    1. Edwards P. K., Mears S. C., Stambough J. B., Foster S. E., Barnes C. L. (2019). Response to Letter to the Editor on “Choices, Compromises, and Controversies in Total Knee and Total Hip Arthroplasty Modifiable Risk Factors: What You Need to Know”. . J. Arthroplasty 34 1039. 10.1016/j.arth.2019.02.015
    1. Ellulu M. S., Patimah I., Khaza’ai H., Rahmat A., Abed Y. (2017). Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci 13 851–863. 10.5114/aoms.2016.58928
    1. Elosua R., Bartali B., Ordovas J. M., Corsi A. M., Lauretani F., Ferrucci L., et al. (2005). Association between physical activity, physical performance, and inflammatory biomarkers in an elderly population: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 60 760–767. 10.1093/gerona/60.6.760
    1. Eom T. Y., Jope R. S. (2009). Blocked inhibitory serine-phosphorylation of glycogen synthase kinase-3alpha/beta impairs in vivo neural precursor cell proliferation. Biol. Psychiatry 66 494–502. 10.1016/j.biopsych.2009.04.015
    1. Erickson M. A., Banks W. A. (2013). Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J. Cereb. Blood Flow Metab. 33 1500–1513. 10.1038/jcbfm.2013.135
    1. Eriksdotter M., Vedin I., Falahati F., Freund-Levi Y., Hjorth E., Faxen-Irving G., et al. (2015). Plasma Fatty Acid Profiles in Relation to Cognition and Gender in Alzheimer’s Disease Patients During Oral Omega-3 Fatty Acid Supplementation: The OmegAD Study. J. Alzheimers. Dis. 48 805–812. 10.3233/jad-150102
    1. Etminan M., Gill S., Samii A. (2003). Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ 327 128. 10.1136/bmj.327.7407.128
    1. Farilla L., Bulotta A., Hirshberg B., Li Calzi S., Khoury N., Noushmehr H., et al. (2003). Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144 5149–5158. 10.1210/en.2003-0323
    1. Farr S. A., Roesler E., Niehoff M. L., Roby D. A., Mckee A., Morley J. E. (2019). Metformin Improves Learning and Memory in the SAMP8 Mouse Model of Alzheimer’s Disease. J. Alzheimers. Dis. 68 1699–1710. 10.3233/jad-181240
    1. Ferrario C. R., Reagan L. P. (2017). Insulin-mediated synaptic plasticity in the CNS: Anatomical, functional and temporal contexts. Neuropharmacology.
    1. Ferreira L. S. S., Fernandes C. S., Vieira M. N. N., De Felice F. G. (2018). Insulin Resistance in Alzheimer’s Disease. Front Neurosci 12 830.
    1. Franceschi C., Campisi J. (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69 (Suppl. 1), S4–S9.
    1. Franceschi C., Garagnani P., Parini P., Giuliani C., Santoro A. (2018). Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14 576–590. 10.1038/s41574-018-0059-4
    1. Frank M. G., Barrientos R. M., Biedenkapp J. C., Rudy J. W., Watkins L. R., Maier S. F. (2006). mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiol. Aging 27 717–722. 10.1016/j.neurobiolaging.2005.03.013
    1. Freude S., Hettich M. M., Schumann C., Stohr O., Koch L., Kohler C., et al. (2009). Neuronal IGF-1 resistance reduces Abeta accumulation and protects against premature death in a model of Alzheimer’s disease. FASEB J. 23 3315–3324. 10.1096/fj.09-132043
    1. Freund-Levi Y., Eriksdotter-Jonhagen M., Cederholm T., Basun H., Faxen-Irving G., Garlind A., et al. (2006). Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch. Neurol. 63 1402–1408. 10.1001/archneur.63.10.1402
    1. Frolich L., Blum-Degen D., Bernstein H. G., Engelsberger S., Humrich J., Laufer S., et al. (1998). Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm (Vienna) 105 423–438. 10.1007/s007020050068
    1. Fujita K., Motoki K., Tagawa K., Chen X., Hama H., Nakajima K., et al. (2016). HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease. Sci Rep 6 31895.
    1. Gault V. A., Holscher C. (2008). GLP-1 agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid. Eur. J. Pharmacol 587 112–117. 10.1016/j.ejphar.2008.03.025
    1. Gejl M., Gjedde A., Egefjord L., Moller A., Hansen S. B., Vang K., et al. (2016). In Alzheimer’s Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial. Front Aging Neurosci 8 108.
    1. Gold M., Alderton C., Zvartau-Hind M., Egginton S., Saunders A. M., Irizarry M., et al. (2010). Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement. Geriatr. Cogn. Disord 30 131–146. 10.1159/000318845
    1. Gomes A. P., Soares A. L. G., Menezes A. M. B., Assuncao M. C., Wehrmeister F. C., Howe L. D., et al. (2019). Adiposity, depression and anxiety: interrelationship and possible mediators. Rev Saude Publica 53 103. 10.11606/s1518-8787.2019053001119
    1. Gottesman R. F., Albert M. S., Alonso A., Coker L. H., Coresh J., Davis S. M., et al. (2017). Associations Between Midlife Vascular Risk Factors and 25-Year Incident Dementia in the Atherosclerosis Risk in Communities (ARIC) Cohort. JAMA Neurol 74 1246–1254. 10.1001/jamaneurol.2017.1658
    1. Gralle M. (2017). The neuronal insulin receptor in its environment. J. Neurochem. 140 359–367. 10.1111/jnc.13909
    1. Grefhorst A., Elzinga B. M., Voshol P. J., Plosch T., Kok T., Bloks V. W., et al. (2002). Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J. Biol. Chem. 277 34182–34190. 10.1074/jbc.m204887200
    1. Gregosa A., Vinuesa A., Todero M. F., Pomilio C., Rossi S. P., Bentivegna M., et al. (2019). Periodic dietary restriction ameliorates amyloid pathology and cognitive impairment in PDAPP-J20 mice: Potential implication of glial autophagy. Neurobiol. Dis 104542. 10.1016/j.nbd.2019.104542
    1. Griffin R. J., Moloney A., Kelliher M., Johnston J. A., Ravid R., Dockery P., et al. (2005). Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J. Neurochem. 93 105–117. 10.1111/j.1471-4159.2004.02949.x
    1. Group A. R., Martin B. K., Szekely C., Brandt J., Piantadosi S., Breitner J. C., et al. (2008). Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch. Neurol. 65 896–905. 10.1001/archneur.2008.65.7.nct70006
    1. Guillemot-Legris O., Muccioli G. G. (2017). Obesity-Induced Neuroinflammation: Beyond the Hypothalamus. Trends Neurosci 40 237–253. 10.1016/j.tins.2017.02.005
    1. Hamer M., Lavoie K. L., Bacon S. L. (2014). Taking up physical activity in later life and healthy ageing: the English longitudinal study of ageing. Br. J. Sports Med. 48 239–243. 10.1136/bjsports-2013-092993
    1. Hao S., Dey A., Yu X., Stranahan A. M. (2016). Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav. Immun. 51 230–239. 10.1016/j.bbi.2015.08.023
    1. Hargrave S. L., Davidson T. L., Zheng W., Kinzig K. P. (2016). Western diets induce blood-brain barrier leakage and alter spatial strategies in rats. Behav. Neurosci. 130 123–135. 10.1037/bne0000110
    1. Harries L. W., Fellows A. D., Pilling L. C., Hernandez D., Singleton A., Bandinelli S., et al. (2012). Advancing age is associated with gene expression changes resembling mTOR inhibition: evidence from two human populations. Mech. Ageing Dev. 133 556–562. 10.1016/j.mad.2012.07.003
    1. Harvie M. N., Pegington M., Mattson M. P., Frystyk J., Dillon B., Evans G., et al. (2011). The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes (Lond) 35 714–727. 10.1038/ijo.2010.171
    1. Henderson S. T., Vogel J. L., Barr L. J., Garvin F., Jones J. J., Costantini L. C. (2009). Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond) 6 31. 10.1186/1743-7075-6-31
    1. Heneka M. T., Carson M. J., El Khoury J., Landreth G. E., Brosseron F., Feinstein D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14 388–405.
    1. Heneka M. T., Kummer M. P., Stutz A., Delekate A., Schwartz S., Vieira-Saecker A., et al. (2013). NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493 674–678. 10.1038/nature11729
    1. Heneka M. T., Sastre M., Dumitrescu-Ozimek L., Dewachter I., Walter J., Klockgether T., et al. (2005). Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation 2 22.
    1. Herzig S., Shaw R. J. (2018). AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19 121–135. 10.1038/nrm.2017.95
    1. Hoffmann K., Sobol N. A., Frederiksen K. S., Beyer N., Vogel A., Vestergaard K., et al. (2016). Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer’s Disease: A Randomized Controlled Trial. J. Alzheimers. Dis. 50 443–453.
    1. Holland W. L., Bikman B. T., Wang L. P., Yuguang G., Sargent K. M., Bulchand S., et al. (2011). Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Invest. 121 1858–1870. 10.1172/jci43378
    1. Hotamisligil G. S. (2010). Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140 900–917. 10.1016/j.cell.2010.02.034
    1. Hotamisligil G. S., Shargill N. S., Spiegelman B. M. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259 87–91. 10.1126/science.7678183
    1. Hutchinson A. N., Tingo L., Brummer R. J. (2020). The Potential Effects of Probiotics and omega-3 Fatty Acids on Chronic Low-Grade Inflammation. Nutrients 12.
    1. Idf. (2017). IDF DIABETES ATLAS [Online]. Available: (accessed December 20, 2020).
    1. Inestrosa N. C., Godoy J. A., Quintanilla R. A., Koenig C. S., Bronfman M. (2005). Peroxisome proliferator-activated receptor gamma is expressed in hippocampal neurons and its activation prevents beta-amyloid neurodegeneration: role of Wnt signaling. Exp. Cell Res. 304 91–104. 10.1016/j.yexcr.2004.09.032
    1. Ishiguro K., Shiratsuchi A., Sato S., Omori A., Arioka M., Kobayashi S., et al. (1993). Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett. 325 167–172. 10.1016/0014-5793(93)81066-9
    1. James S. L., Lucchesi L. R., Bisignano C., Castle C. D., Dingels Z. V., Fox J. T., et al. (2020). Morbidity and mortality from road injuries: results from the Global Burden of Disease Study 2017. Inj. Prev. 26 i46–i56.
    1. Jantzen P. T., Connor K. E., Dicarlo G., Wenk G. L., Wallace J. L., Rojiani A. M., et al. (2002). Microglial activation and beta -amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J. Neurosci. 22 2246–2254. 10.1523/jneurosci.22-06-02246.2002
    1. Jensen C. S., Bahl J. M., Ostergaard L. B., Hogh P., Wermuth L., Heslegrave A., et al. (2019). Exercise as a potential modulator of inflammation in patients with Alzheimer’s disease measured in cerebrospinal fluid and plasma. Exp. Gerontol. 121 91–98. 10.1016/j.exger.2019.04.003
    1. Jia L., Vianna C. R., Fukuda M., Berglund E. D., Liu C., Tao C., et al. (2014). Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun 5 3878.
    1. Jiao S. S., Shen L. L., Zhu C., Bu X. L., Liu Y. H., Liu C. H., et al. (2016). Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Transl Psychiatry 6 e907. 10.1038/tp.2016.186
    1. Jimenez S., Torres M., Vizuete M., Sanchez-Varo R., Sanchez-Mejias E., Trujillo-Estrada L., et al. (2011). Age-dependent accumulation of soluble amyloid beta (Abeta) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-alpha (sAPP(alpha)) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3beta pathway in Alzheimer mouse model. J. Biol. Chem. 286 18414–18425. 10.1074/jbc.m110.209718
    1. Jope R. S., Yuskaitis C. J., Beurel E. (2007). Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem. Res. 32 577–595. 10.1007/s11064-006-9128-5
    1. Kashiwaya Y., Bergman C., Lee J. H., Wan R., King M. T., Mughal M. R., et al. (2013). A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol. Aging 34 1530–1539. 10.1016/j.neurobiolaging.2012.11.023
    1. Kattenstroth J. C., Kolankowska I., Kalisch T., Dinse H. R. (2010). Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities. Front Aging Neurosci 2.
    1. Kellar D., Craft S. (2020). Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 19 758–766. 10.1016/s1474-4422(20)30231-3
    1. Kelly K. M., Nadon N. L., Morrison J. H., Thibault O., Barnes C. A., Blalock E. M. (2006). The neurobiology of aging. Epilepsy Res. 68 (Suppl. 1), S5–S20.
    1. Kitazawa M., Oddo S., Yamasaki T. R., Green K. N., Laferla F. M. (2005). Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J. Neurosci. 25 8843–8853. 10.1523/jneurosci.2868-05.2005
    1. Kleinridders A., Ferris H. A., Cai W., Kahn C. R. (2014). Insulin action in brain regulates systemic metabolism and brain function. Diabetes Metab. Res. Rev 63 2232–2243. 10.2337/db14-0568
    1. Klempin F., Kempermann G. (2007). Adult hippocampal neurogenesis and aging. Eur. Arch. Psychiatry Clin. Neurosci. 257 271–280.
    1. Kloting N., Bluher M. (2014). Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord 15 277–287. 10.1007/s11154-014-9301-0
    1. Kobayashi Y., Kinoshita T., Matsumoto A., Yoshino K., Saito I., Xiao J. Z. (2019a). Bifidobacterium Breve A1 Supplementation Improved Cognitive Decline in Older Adults with Mild Cognitive Impairment: An Open-Label, Single-Arm Study. J Prev Alzheimers Dis 6 70–75.
    1. Kobayashi Y., Kuhara T., Oki M., Xiao J. Z. (2019b). Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef Microbes 10 511–520. 10.3920/bm2018.0170
    1. Kobayashi Y., Sugahara H., Shimada K., Mitsuyama E., Kuhara T., Yasuoka A., et al. (2017). Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep 7 13510.
    1. Koenig A. M., Mechanic-Hamilton D., Xie S. X., Combs M. F., Cappola A. R., Xie L., et al. (2017). Effects of the Insulin Sensitizer Metformin in Alzheimer Disease: Pilot Data From a Randomized Placebo-controlled Crossover Study. Alzheimer Dis. Assoc. Disord. 31 107–113. 10.1097/wad.0000000000000202
    1. Koldamova R. P., Lefterov I. M., Staufenbiel M., Wolfe D., Huang S., Glorioso J. C., et al. (2005). The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease. J. Biol. Chem. 280 4079–4088. 10.1074/jbc.m411420200
    1. Koo B. K., Kim L. K., Lee J. Y., Moon M. K. (2019). Taking metformin and cognitive function change in older patients with diabetes. Geriatr Gerontol Int 19 755–761. 10.1111/ggi.13692
    1. Kotti T. J., Ramirez D. M., Pfeiffer B. E., Huber K. M., Russell D. W. (2006). Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc. Natl. Acad. Sci. U.S.A. 103 3869–3874. 10.1073/pnas.0600316103
    1. Kowianski P., Lietzau G., Czuba E., Waskow M., Steliga A., Morys J. (2018). BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell Mol. Neurobiol 38 579–593. 10.1007/s10571-017-0510-4
    1. Krstic D., Madhusudan A., Doehner J., Vogel P., Notter T., Imhof C., et al. (2012). Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation 9 151.
    1. Larsen C. M., Faulenbach M., Vaag A., Volund A., Ehses J. A., Seifert B., et al. (2007). Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356 1517–1526.
    1. Lazarou I., Parastatidis T., Tsolaki A., Gkioka M., Karakostas A., Douka S., et al. (2017). International Ballroom Dancing Against Neurodegeneration: A Randomized Controlled Trial in Greek Community-Dwelling Elders With Mild Cognitive impairment. Am. J. Alzheimers Dis. Other Demen. 32 489–499. 10.1177/1533317517725813
    1. Le K. A., Ventura E. E., Fisher J. Q., Davis J. N., Weigensberg M. J., Punyanitya M., et al. (2011). Ethnic differences in pancreatic fat accumulation and its relationship with other fat depots and inflammatory markers. Diabetes Care 34 485–490. 10.2337/dc10-0760
    1. Lee E. B., Mattson M. P. (2014). The neuropathology of obesity: insights from human disease. Acta Neuropathol. 127 3–28. 10.1007/s00401-013-1190-x
    1. Leonardini A., Laviola L., Perrini S., Natalicchio A., Giorgino F. (2009). Cross-Talk between PPARgamma and Insulin Signaling and Modulation of Insulin Sensitivity. PPAR Res 2009 818945.
    1. Li H., Yang S., Wu J., Ji L., Zhu L., Cao L., et al. (2018). cAMP/PKA signaling pathway contributes to neuronal apoptosis via regulating IDE expression in a mixed model of type 2 diabetes and Alzheimer’s disease. J. Cell. Biochem. 119 1616–1626. 10.1002/jcb.26321
    1. Li J., Chen S., Qiang J., Wang X., Chen L., Zou D. (2014). Diet-induced obesity mediates a proinflammatory response in pancreatic beta cell via toll-like receptor 4. Cent Eur J Immunol 39 306–315. 10.5114/ceji.2014.45940
    1. Lim G. P., Yang F., Chu T., Chen P., Beech W., Teter B., et al. (2000). Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci. 20 5709–5714. 10.1523/jneurosci.20-15-05709.2000
    1. Lin S. H., Cheng P. C., Tu S. T., Hsu S. R., Cheng Y. C., Liu Y. H. (2018). Effect of metformin monotherapy on serum lipid profile in statin-naive individuals with newly diagnosed type 2 diabetes mellitus: a cohort study. PeerJ 6 e4578. 10.7717/peerj.4578
    1. Liu J., Li L. (2019). Targeting Autophagy for the Treatment of Alzheimer’s Disease: Challenges and Opportunities. Front Mol Neurosci 12 203.
    1. Liu R., Yang J., Liu L., Lu Z., Shi Z., Ji W., et al. (2020). An “Amyloid-beta Cleaner” for the Treatment of Alzheimer’s Disease by Normalizing Microglial Dysfunction. Adv Sci (Weinh) 7 1901555. 10.1002/advs.201901555
    1. Liu Y., Cheng A., Li Y. J., Yang Y., Kishimoto Y., Zhang S., et al. (2019). SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nat Commun 10 1886.
    1. Lochhead J. J., Kellohen K. L., Ronaldson P. T., Davis T. P. (2019). Distribution of insulin in trigeminal nerve and brain after intranasal administration. Sci Rep 9 2621.
    1. Lu Y., Dong Y., Tucker D., Wang R., Ahmed M. E., Brann D., et al. (2017). Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer’s Disease. J. Alzheimers. Dis. 56 1469–1484. 10.3233/jad-160869
    1. Lucassen P. J., Oomen C. A., Naninck E. F., Fitzsimons C. P., Van Dam A. M., Czeh B., et al. (2015). Regulation of Adult Neurogenesis and Plasticity by (Early) Stress, Glucocorticoids, and Inflammation. Cold Spring Harb. Perspect. Biol. 7 a021303. 10.1101/cshperspect.a021303
    1. Luchsinger J. A., Perez T., Chang H., Mehta P., Steffener J., Pradabhan G., et al. (2016). Metformin in Amnestic Mild Cognitive Impairment: Results of a Pilot Randomized Placebo Controlled Clinical Trial. J. Alzheimers. Dis. 51 501–514. 10.3233/jad-150493
    1. Luppino F. S., De Wit L. M., Bouvy P. F., Stijnen T., Cuijpers P., Penninx B. W., et al. (2010). Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry 67 220–229. 10.1001/archgenpsychiatry.2010.2
    1. Lutjohann D., Breuer O., Ahlborg G., Nennesmo I., Siden A., Diczfalusy U., et al. (1996). Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc. Natl. Acad. Sci. U.S.A. 93 9799–9804. 10.1073/pnas.93.18.9799
    1. Ly P. T., Wu Y., Zou H., Wang R., Zhou W., Kinoshita A., et al. (2013). Inhibition of GSK3beta-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J. Clin. Invest. 123 224–235. 10.1172/jci64516
    1. Ma L., Wang R., Dong W., Zhao Z. (2018). Caloric restriction can improve learning and memory in C57/BL mice probably via regulation of the AMPK signaling pathway. Exp. Gerontol. 102 28–35. 10.1016/j.exger.2017.11.013
    1. Mac Giollabhui N., Swistun D., Murray S., Moriarity D. P., Kautz M. M., Ellman L. M., et al. (2020). Executive dysfunction in depression in adolescence: the role of inflammation and higher body mass. Psychol Med 50 683–691. 10.1017/s0033291719000564
    1. MacPherson K. P., Sompol P., Kannarkat G. T., Chang J., Sniffen L., Wildner M. E., et al. (2017). Peripheral administration of the soluble TNF inhibitor XPro1595 modifies brain immune cell profiles, decreases beta-amyloid plaque load, and rescues impaired long-term potentiation in 5xFAD mice. Neurobiol. Dis. 102 81–95. 10.1016/j.nbd.2017.02.010
    1. Maedler K., Sergeev P., Ris F., Oberholzer J., Joller-Jemelka H. I., Spinas G. A., et al. (2002). Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110 851–860. 10.1172/jci200215318
    1. Majumder S., Richardson A., Strong R., Oddo S. (2011). Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS ONE 6 e25416. 10.1371/journal.pone.0025416
    1. Malone J. I., Hanna S., Saporta S., Mervis R. F., Park C. R., Chong L., et al. (2008). Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr. Diabetes 9 531–539. 10.1111/j.1399-5448.2008.00431.x
    1. Mao Y. F., Guo Z., Zheng T., Jiang Y., Yan Y., Yin X., et al. (2016). Intranasal insulin alleviates cognitive deficits and amyloid pathology in young adult APPswe/PS1dE9 mice. Aging Cell 15 893–902. 10.1111/acel.12498
    1. Maric T., Woodside B., Luheshi G. N. (2014). The effects of dietary saturated fat on basal hypothalamic neuroinflammation in rats. Brain Behav. Immun. 36 35–45. 10.1016/j.bbi.2013.09.011
    1. Marquez D. X., Wilson R., Aguinaga S., Vasquez P., Fogg L., Yang Z., et al. (2017). Regular Latin Dancing and Health Education May Improve Cognition of Late Middle-Aged and Older Latinos. J Aging Phys Act 25 482–489. 10.1123/japa.2016-0049
    1. Mast N., Saadane A., Valencia-Olvera A., Constans J., Maxfield E., Arakawa H., et al. (2017). Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer’s disease. Neuropharmacology 123 465–476. 10.1016/j.neuropharm.2017.06.026
    1. Mayeux R., Stern Y. (2012). Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2.
    1. McGrattan A. M., Mcguinness B., Mckinley M. C., Kee F., Passmore P., Woodside J. V., et al. (2019). Diet and Inflammation in Cognitive Ageing and Alzheimer’s Disease. Curr Nutr Rep 8 53–65.
    1. Melo H. M., Seixas, Da Silva G. D. S., Sant’ana M. R., Teixeira C. V. L., Clarke J. R., et al. (2020). Palmitate Is Increased in the Cerebrospinal Fluid of Humans with Obesity and Induces Memory Impairment in Mice via Pro-inflammatory TNF-alpha. Cell Rep 30.
    1. Merino-Serrais P., Benavides-Piccione R., Blazquez-Llorca L., Kastanauskaite A., Rabano A., Avila J., et al. (2013). The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease. Brain 136 1913–1928. 10.1093/brain/awt088
    1. Milanski M., Degasperi G., Coope A., Morari J., Denis R., Cintra D. E., et al. (2009). Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J. Neurosci. 29 359–370. 10.1523/jneurosci.2760-08.2009
    1. Miwa K., Okazaki S., Sakaguchi M., Mochizuki H., Kitagawa K. (2016). Interleukin-6, interleukin-6 receptor gene variant, small-vessel disease and incident dementia. Eur. J. Neurol. 23 656–663. 10.1111/ene.12921
    1. Morris J. K., Uy R. A. Z., Vidoni E. D., Wilkins H. M., Archer A. E., Thyfault J. P., et al. (2017). Effect of APOE epsilon4 Genotype on Metabolic Biomarkers in Aging and Alzheimer’s Disease. J. Alzheimers. Dis 58 1129–1135. 10.3233/jad-170148
    1. Moser V. A., Uchoa M. F., Pike C. J. (2018). TLR4 inhibitor TAK-242 attenuates the adverse neural effects of diet-induced obesity. J Neuroinflammation 15 306.
    1. Mu Y., Gage F. H. (2011). Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol.Neurodegener. 6 85. 10.1186/1750-1326-6-85
    1. Mullins R. J., Mustapic M., Chia C. W., Carlson O., Gulyani S., Tran J., et al. (2019). A Pilot Study of Exenatide Actions in Alzheimer’s Disease. Curr Alzheimer Res 16 741–752. 10.2174/1567205016666190913155950
    1. Mun M. J., Kim J. H., Choi J. Y., Jang W. C. (2016). Genetic polymorphisms of interleukin genes and the risk of Alzheimer’s disease: An update meta-analysis. Meta Gene 8 1–10. 10.1016/j.mgene.2016.01.001
    1. Myette-Cote E., Durrer C., Neudorf H., Bammert T. D., Botezelli J. D., Johnson J. D., et al. (2018). The effect of a short-term low-carbohydrate, high-fat diet with or without postmeal walks on glycemic control and inflammation in type 2 diabetes: a randomized trial. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315 R1210–R1219.
    1. Myhre C. L., Thygesen C., Villadsen B., Vollerup J., Ilkjaer L., Krohn K. T., et al. (2019). Microglia Express Insulin-Like Growth Factor-1 in the Hippocampus of Aged APPswe/PS1DeltaE9 Transgenic Mice. Front Cell Neurosci 13 308.
    1. Nadler Y., Alexandrovich A., Grigoriadis N., Hartmann T., Rao K. S., Shohami E., et al. (2008). Increased expression of the gamma-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. Glia 56 552–567. 10.1002/glia.20638
    1. Napoli N., Shah K., Waters D. L., Sinacore D. R., Qualls C., Villareal D. T. (2014). Effect of weight loss, exercise, or both on cognition and quality of life in obese older adults. Am. J. Clin. Nutr. 100 189–198. 10.3945/ajcn.113.082883
    1. Nguyen T. T., Ta Q. T. H., Nguyen T. T. D., Le T. T., Vo V. G. (2020). Role of Insulin Resistance in the Alzheimer’s Disease Progression. Neurochem. Res. 45 1481–1491.
    1. O’Brien P. D., Hinder L. M., Callaghan B. C., Feldman E. L. (2017). Neurological consequences of obesity. Lancet Neurol. 16 465–477.
    1. O’Bryant S. E., Hobson V., Hall J. R., Waring S. C., Chan W., Massman P., et al. (2009). Brain-derived neurotrophic factor levels in Alzheimer’s disease. J. Alzheimers. Dis. 17 337–341.
    1. Ou Z., Kong X., Sun X., He X., Zhang L., Gong Z., et al. (2018). Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav. Immun. 69 351–363. 10.1016/j.bbi.2017.12.009
    1. Panagaki T., Gengler S., Holscher C. (2018). The Novel DA-CH3 Dual Incretin Restores Endoplasmic Reticulum Stress and Autophagy Impairments to Attenuate Alzheimer-Like Pathology and Cognitive Decrements in the APPSWE/PS1DeltaE9 Mouse Model. J. Alzheimers. Dis. 66 195–218. 10.3233/jad-180584
    1. Pang R., Wang X., Pei F., Zhang W., Shen J., Gao X., et al. (2019). Regular Exercise Enhances Cognitive Function and Intracephalic GLUT Expression in Alzheimer’s Disease Model Mice. J. Alzheimers. Dis. 72 83–96. 10.3233/jad-190328
    1. Paouri E., Tzara O., Zenelak S., Georgopoulos S. (2017). Genetic Deletion of Tumor Necrosis Factor-alpha Attenuates Amyloid-beta Production and Decreases Amyloid Plaque Formation and Glial Response in the 5XFAD Model of Alzheimer’s Disease. J. Alzheimers. Dis. 60 165–181. 10.3233/jad-170065
    1. Pardo M., Abrial E., Jope R. S., Beurel E. (2016). GSK3beta isoform-selective regulation of depression, memory and hippocampal cell proliferation. Genes Brain Behav. 15 348–355. 10.1111/gbb.12283
    1. Parimisetty A., Dorsemans A. C., Awada R., Ravanan P., Diotel N., Lefebvre D’hellencourt C. (2016). Secret talk between adipose tissue and central nervous system via secreted factors-an emerging frontier in the neurodegenerative research. J Neuroinflammation 13 67.
    1. Pasqualetti P., Bonomini C., Dal Forno G., Paulon L., Sinforiani E., Marra C., et al. (2009). A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer’s disease. Aging Clin. Exp. Res. 21 102–110. 10.1007/bf03325217
    1. Patterson S. L. (2015). Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1beta, BDNF and synaptic plasticity. Neuropharmacology 96 11–18. 10.1016/j.neuropharm.2014.12.020
    1. Peineau S., Taghibiglou C., Bradley C., Wong T. P., Liu L., Lu J., et al. (2007). LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 53 703–717. 10.1016/j.neuron.2007.01.029
    1. Peng S., Wuu J., Mufson E. J., Fahnestock M. (2005). Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J. Neurochem. 93 1412–1421. 10.1111/j.1471-4159.2005.03135.x
    1. Poggi M., Bastelica D., Gual P., Iglesias M. A., Gremeaux T., Knauf C., et al. (2007). C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia 50 1267–1276. 10.1007/s00125-007-0654-8
    1. Pomilio C., Gorojod R. M., Riudavets M., Vinuesa A., Presa J., Gregosa A., et al. (2020). Microglial autophagy is impaired by prolonged exposure to beta-amyloid peptides: evidence from experimental models and Alzheimer’s disease patients. Geroscience 42 613–632. 10.1007/s11357-020-00161-9
    1. Puder J. J., Munsch S. (2010). Psychological correlates of childhood obesity. Int.J.Obes.(Lond) 34 (Suppl. 2), S37–S43.
    1. Qi Y., Klyubin I., Cuello A. C., Rowan M. J. (2018). NLRP3-dependent synaptic plasticity deficit in an Alzheimer’s disease amyloidosis model in vivo. Neurobiol. Dis. 114 24–30. 10.1016/j.nbd.2018.02.016
    1. Qiu W. Q., Folstein M. F. (2006). Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiol. Aging 27 190–198. 10.1016/j.neurobiolaging.2005.01.004
    1. Quinn J. F., Raman R., Thomas R. G., Yurko-Mauro K., Nelson E. B., Van Dyck C., et al. (2010). Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA 304 1903–1911. 10.1001/jama.2010.1510
    1. Rajasekar N., Nath C., Hanif K., Shukla R. (2017a). Intranasal Insulin Administration Ameliorates Streptozotocin (ICV)-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Memory Impairment in Rats. Mol. Neurobiol. 54 6507–6522. 10.1007/s12035-016-0169-8
    1. Rajasekar N., Nath C., Hanif K., Shukla R. (2017b). Intranasal insulin improves cerebral blood flow, Nrf-2 expression and BDNF in STZ (ICV)-induced memory impaired rats. Life Sci. 173 1–10. 10.1016/j.lfs.2016.09.020
    1. Rao P., Knaus E. E. (2008). Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci 11 81s–110s.
    1. Reed B., Villeneuve S., Mack W., Decarli C., Chui H. C., Jagust W. (2014). Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol 71 195–200. 10.1001/jamaneurol.2013.5390
    1. Reger M. A., Henderson S. T., Hale C., Cholerton B., Baker L. D., Watson G. S., et al. (2004). Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 25 311–314. 10.1016/s0197-4580(03)00087-3
    1. Reger M. A., Watson G. S., Green P. S., Baker L. D., Cholerton B., Fishel M. A., et al. (2008). Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J. Alzheimers. Dis. 13 323–331. 10.3233/jad-2008-13309
    1. Reich D., Gallucci G., Tong M., De La Monte S. M. (2018). Therapeutic Advantages of Dual Targeting of PPAR-delta and PPAR-gamma in an Experimental Model of Sporadic Alzheimer’s Disease. J Parkinsons Dis Alzheimers Dis 5.
    1. Reitz C. (2013). Dyslipidemia and the risk of Alzheimer’s disease. Curr. Atheroscler. Rep 15 307.
    1. Rhea E. M., Nirkhe S., Nguyen S., Pemberton S., Bammler T. K., Beyer R., et al. (2019). Molecular Mechanisms of Intranasal Insulin in SAMP8 Mice. J. Alzheimers. Dis. 71 1361–1373. 10.3233/jad-190707
    1. Ridker P. M., Rifai N., Stampfer M. J., Hennekens C. H. (2000). Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101 1767–1772. 10.1161/01.cir.101.15.1767
    1. Risner M. E., Saunders A. M., Altman J. F., Ormandy G. C., Craft S., Foley I. M., et al. (2006). Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J. 6 246–254. 10.1038/sj.tpj.6500369
    1. Rockenstein E., Torrance M., Adame A., Mante M., Bar-On P., Rose J. B., et al. (2007). Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J. Neurosci. 27 1981–1991. 10.1523/jneurosci.4321-06.2007
    1. Rogers J., Kirby L. C., Hempelman S. R., Berry D. L., Mcgeer P. L., Kaszniak A. W., et al. (1993). Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43 1609–1611.
    1. Ronan L., Alexander-Bloch A., Fletcher P. C. (2019). Childhood Obesity, Cortical Structure, and Executive Function in Healthy Children. Cereb Cortex.
    1. Ruegsegger G. N., Vanderboom P. M., Dasari S., Klaus K. A., Kabiraj P., Mccarthy C. B., et al. (2019). Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain. JCI Insight 4.
    1. Ryan C. M., Freed M. I., Rood J. A., Cobitz A. R., Waterhouse B. R., Strachan M. W. (2006). Improving metabolic control leads to better working memory in adults with type 2 diabetes. Diabetes Care 29 345–351. 10.2337/diacare.29.02.06.dc05-1626
    1. Ryan S. M., Kelly A. M. (2016). Exercise as a pro-cognitive, pro-neurogenic and anti-inflammatory intervention in transgenic mouse models of Alzheimer’s disease. Ageing Res. Rev. 27 77–92. 10.1016/j.arr.2016.03.007
    1. Sah S. K., Lee C., Jang J. H., Park G. H. (2017). Effect of high-fat diet on cognitive impairment in triple-transgenic mice model of Alzheimer’s disease. Biochem. Biophys. Res. Commun. 493 731–736. 10.1016/j.bbrc.2017.08.122
    1. Saini R. K., Rengasamy K. R. R., Mahomoodally F. M., Keum Y. S. (2020). Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives. Pharmacol. Res. 155 104730. 10.1016/j.phrs.2020.104730
    1. Saiz-Vazquez O., Puente-Martinez A., Ubillos-Landa S., Pacheco-Bonrostro J., Santabarbara J. (2020). Cholesterol and Alzheimer’s Disease Risk: A Meta-Meta-Analysis. Brain Sci 10.
    1. Salameh T. S., Bullock K. M., Hujoel I. A., Niehoff M. L., Wolden-Hanson T., Kim J., et al. (2015). Central Nervous System Delivery of Intranasal Insulin: Mechanisms of Uptake and Effects on Cognition. J. Alzheimers. Dis. 47 715–728. 10.3233/jad-150307
    1. Salameh T. S., Mortell W. G., Logsdon A. F., Butterfield D. A., Banks W. A. (2019). Disruption of the hippocampal and hypothalamic blood-brain barrier in a diet-induced obese model of type II diabetes: prevention and treatment by the mitochondrial carbonic anhydrase inhibitor, topiramate. Fluids Barriers CNS 16 1.
    1. Samant N. P., Gupta G. L. (2021). Novel therapeutic strategies for Alzheimer’s disease targeting brain cholesterol homeostasis. Eur. J. Neurosci. 53 673–686. 10.1111/ejn.14949
    1. Sanguinetti E., Guzzardi M. A., Panetta D., Tripodi M., De Sena V., Quaglierini M., et al. (2019). Combined Effect of Fatty Diet and Cognitive Decline on Brain Metabolism, Food Intake, Body Weight, and Counteraction by Intranasal Insulin Therapy in 3xTg Mice. Front Cell Neurosci 13 188.
    1. Sato T., Hanyu H., Hirao K., Kanetaka H., Sakurai H., Iwamoto T. (2011). Efficacy of PPAR-gamma agonist pioglitazone in mild Alzheimer disease. Neurobiol. Aging 32 1626–1633. 10.1016/j.neurobiolaging.2009.10.009
    1. Scheff S. W., Price D. A., Ansari M. A., Roberts K. N., Schmitt F. A., Ikonomovic M. D., et al. (2015). Synaptic change in the posterior cingulate gyrus in the progression of Alzheimer’s disease. J. Alzheimers. Dis. 43 1073–1090. 10.3233/jad-141518
    1. Scheff S. W., Price D. A., Schmitt F. A., Mufson E. J. (2006). Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 27 1372–1384. 10.1016/j.neurobiolaging.2005.09.012
    1. Schmid V., Kullmann S., Gfrorer W., Hund V., Hallschmid M., Lipp H. P., et al. (2018). Safety of intranasal human insulin: A review. Diabetes. Obes. Metab 20 1563–1577. 10.1111/dom.13279
    1. Searcy J. L., Phelps J. T., Pancani T., Kadish I., Popovic J., Anderson K. L., et al. (2012). Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer’s disease. J. Alzheimers. Dis. 30 943–961. 10.3233/jad-2012-111661
    1. Selemon L. D. (2013). A role for synaptic plasticity in the adolescent development of executive function. Transl Psychiatry 3 e238. 10.1038/tp.2013.7
    1. Shellington E. M., Reichert S. M., Heath M., Gill D. P., Shigematsu R., Petrella R. J. (2018). Results From a Feasibility Study of Square-Stepping Exercise in Older Adults With Type 2 Diabetes and Self-Reported Cognitive Complaints to Improve Global Cognitive Functioning. Can J Diabetes 42.
    1. Sheng J. G., Bora S. H., Xu G., Borchelt D. R., Price D. L., Koliatsos V. E. (2003). Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol. Dis. 14 133–145. 10.1016/s0969-9961(03)00069-x
    1. Shinto L., Quinn J., Montine T., Dodge H. H., Woodward W., Baldauf-Wagner S., et al. (2014). A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J. Alzheimers. Dis. 38 111–120. 10.3233/jad-130722
    1. Sobol N. A., Dall C. H., Hogh P., Hoffmann K., Frederiksen K. S., Vogel A., et al. (2018). Change in Fitness and the Relation to Change in Cognition and Neuropsychiatric Symptoms After Aerobic Exercise in Patients with Mild Alzheimer’s Disease. J. Alzheimers. Dis. 65 137–145. 10.3233/jad-180253
    1. Sochocka M., Donskow-Lysoniewska K., Diniz B. S., Kurpas D., Brzozowska E., Leszek J. (2019). The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease-a Critical Review. Mol. Neurobiol. 56 1841–1851. 10.1007/s12035-018-1188-4
    1. Solas M., Milagro F. I., Ramirez M. J., Martinez J. A. (2017). Inflammation and gut-brain axis link obesity to cognitive dysfunction: plausible pharmacological interventions. Curr. Opin. Pharmacol 37 87–92. 10.1016/j.coph.2017.10.005
    1. Solmaz V., Cinar B. P., Yigitturk G., Cavusoglu T., Taskiran D., Erbas O. (2015). Exenatide reduces TNF-alpha expression and improves hippocampal neuron numbers and memory in streptozotocin treated rats. Eur. J. Pharmacol 765 482–487. 10.1016/j.ejphar.2015.09.024
    1. Solomon A., Kivipelto M., Wolozin B., Zhou J., Whitmer R. A. (2009). Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement. Geriatr. Cogn. Disord 28 75–80. 10.1159/000231980
    1. Sparks D. L., Scheff S. W., Hunsaker J. C., III, Liu H., Landers T., Gross D. R. (1994). Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp. Neurol. 126 88–94. 10.1006/exnr.1994.1044
    1. Spilman P., Podlutskaya N., Hart M. J., Debnath J., Gorostiza O., Bredesen D., et al. (2010). Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS.One. 5 e9979. 10.1371/journal.pone.0009979
    1. Stavoe A. K. H., Holzbaur E. L. F. (2020). Neuronal autophagy declines substantially with age and is rescued by overexpression of WIPI2. Autophagy 16 371–372. 10.1080/15548627.2019.1695401
    1. Stebbings K. A., Choi H. W., Ravindra A., Llano D. A. (2016). The impact of aging, hearing loss, and body weight on mouse hippocampal redox state, measured in brain slices using fluorescence imaging. Neurobiol. Aging 42 101–109. 10.1016/j.neurobiolaging.2016.03.006
    1. Steen E., Terry B. M., Rivera E. J., Cannon J. L., Neely T. R., Tavares R., et al. (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis 7 63–80. 10.3233/jad-2005-7107
    1. Stewart C. R., Stuart L. M., Wilkinson K., Van Gils J. M., Deng J., Halle A., et al. (2010). CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11 155–161. 10.1038/ni.1836
    1. Stohr O., Schilbach K., Moll L., Hettich M. M., Freude S., Wunderlich F. T., et al. (2013). Insulin receptor signaling mediates APP processing and beta-amyloid accumulation without altering survival in a transgenic mouse model of Alzheimer’s disease. Age (Dordr) 35 83–101. 10.1007/s11357-011-9333-2
    1. Stranahan A. M., Arumugam T. V., Cutler R. G., Lee K., Egan J. M., Mattson M. P. (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat.Neurosci. 11 309–317. 10.1038/nn2055
    1. Subramanian J., Savage J. C., Tremblay M. E. (2020). Synaptic Loss in Alzheimer’s Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models. Front Cell Neurosci 14 592607.
    1. Tai L. M., Koster K. P., Luo J., Lee S. H., Wang Y. T., Collins N. C., et al. (2014). Amyloid-beta pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. J. Biol. Chem. 289 30538–30555. 10.1074/jbc.m114.600833
    1. Tamtaji O. R., Heidari-Soureshjani R., Mirhosseini N., Kouchaki E., Bahmani F., Aghadavod E., et al. (2019). Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin. Nutr. 38 2569–2575. 10.1016/j.clnu.2018.11.034
    1. Tanokashira D., Kurata E., Fukuokaya W., Kawabe K., Kashiwada M., Takeuchi H., et al. (2018). Metformin treatment ameliorates diabetes-associated decline in hippocampal neurogenesis and memory via phosphorylation of insulin receptor substrate 1. FEBS Open Bio 8 1104–1118. 10.1002/2211-5463.12436
    1. Taylor M. K., Sullivan D. K., Mahnken J. D., Burns J. M., Swerdlow R. H. (2018). Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimers Dement (N Y) 4 28–36. 10.1016/j.trci.2017.11.002
    1. Theriault P., Elali A., Rivest S. (2016). High fat diet exacerbates Alzheimer’s disease-related pathology in APPswe/PS1 mice. Oncotarget 7 67808–67827.
    1. Tobin M. K., Musaraca K., Disouky A., Shetti A., Bheri A., Honer W. G., et al. (2019). Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer’s Disease Patients. Cell Stem Cell.
    1. Toda T., Gage F. H. (2017). Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res.
    1. Tong L., Prieto G. A., Kramar E. A., Smith E. D., Cribbs D. H., Lynch G., et al. (2012). Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1beta via p38 mitogen-activated protein kinase. J. Neurosci. 32 17714–17724.
    1. Tremmel M., Gerdtham U. G., Nilsson P. M., Saha S. (2017). Economic Burden of Obesity: A Systematic Literature Review. Int J Environ Res Public Health 14.
    1. Tu S., Okamoto S., Lipton S. A., Xu H. (2014). Oligomeric Abeta-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 9 48.
    1. Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 1027–1031.
    1. Uddin M. S., Mamun A. A., Labu Z. K., Hidalgo-Lanussa O., Barreto G. E., Ashraf G. M. (2019). Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis. J. Cell. Physiol. 234 8094–8112.
    1. Van der Auwera I., Wera S., Van Leuven F., Henderson S. T. (2005). A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr Metab (Lond) 2 28.
    1. van der Kant R., Langness V. F., Herrera C. M., Williams D. A., Fong L. K., Leestemaker Y., et al. (2019). Cholesterol Metabolism Is a Druggable Axis that Independently Regulates Tau and Amyloid-beta in iPSC-Derived Alzheimer’s Disease Neurons. Cell Stem Cell 24.
    1. van Duinkerken E., Ryan C. M. (2019). Diabetes mellitus in the young and the old: Effects on cognitive functioning across the life span. Neurobiol. Dis. 134 104608.
    1. Varga T., Czimmerer Z., Nagy L. (2011). PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta 1812 1007–1022.
    1. Velloso L. A., Folli F., Saad M. J. (2015). TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocr.Rev. 36 245–271.
    1. Vidal-Puig A., Jimenez-Linan M., Lowell B. B., Hamann A., Hu E., Spiegelman B., et al. (1996). Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J. Clin. Invest. 97 2553–2561.
    1. Vinuesa A., Bentivegna M., Calfa G., Filipello F., Pomilio C., Bonaventura M. M., et al. (2019). Early Exposure to a High-Fat Diet Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like Extracellular Vesicles. Mol. Neurobiol. 56 5075–5094.
    1. Vinuesa A., Pomilio C., Menafra M., Bonaventura M. M., Garay L., Mercogliano M. F., et al. (2016). Juvenile exposure to a high fat diet promotes behavioral and limbic alterations in the absence of obesity. Psychoneuroendocrinology 72 22–33.
    1. Vogt N. M., Kerby R. L., Dill-Mcfarland K. A., Harding S. J., Merluzzi A. P., Johnson S. C., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7 13537.
    1. Wang B., Tontonoz P. (2018). Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol 14 452–463.
    1. Wang Q., Hu J., Liu Y., Li J., Liu B., Li M., et al. (2019). Aerobic Exercise Improves Synaptic-Related Proteins of Diabetic Rats by Inhibiting FOXO1/NF-kappaB/NLRP3 Inflammatory Signaling Pathway and Ameliorating PI3K/Akt Insulin Signaling Pathway. J. Mol. Neurosci. 69 28–38.
    1. Wang T. (2015). TNF-alpha G308A polymorphism and the susceptibility to Alzheimer’s disease: an updated meta-analysis. Arch. Med. Res. 46:24.
    1. Wang T., Fu F. H., Han B., Zhang L. M., Zhang X. M. (2011). Long-term but not short-term aspirin treatment attenuates diabetes-associated learning and memory decline in mice. Exp. Clin. Endocrinol. Diabetes 119 36–40.
    1. Wang Z., Dong B., Hu J., Adegbija O., Arnold L. W. (2016). Exploring the non-linear association between BMI and mortality in adults with and without diabetes: the US National Health Interview Survey. Diabet. Med. 33 1691–1699.
    1. Warden A., Truitt J., Merriman M., Ponomareva O., Jameson K., Ferguson L. B., et al. (2016). Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep 6 27618.
    1. Watson G. S., Cholerton B. A., Reger M. A., Baker L. D., Plymate S. R., Asthana S., et al. (2005). Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am. J. Geriatr. Psychiatry 13 950–958.
    1. Wei L., Yao M., Zhao Z., Jiang H., Ge S. (2018). High-fat diet aggravates postoperative cognitive dysfunction in aged mice. BMC Anesthesiol 18 20.
    1. Who. (2018). Obesity and overweight [Online]. Available: (accessed January 10, 2021).
    1. Who. (2020). . WHO. (accessed January 10, 2021).
    1. Wilcox G. (2005). Insulin and insulin resistance. Clin Biochem Rev 26 19–39.
    1. Wilhelmi de Toledo F., Grundler F., Bergouignan A., Drinda S., Michalsen A. (2019). Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PLoS ONE 14 e0209353.
    1. Xue Q. S., Sparks D. L., Streit W. J. (2007). Microglial activation in the hippocampus of hypercholesterolemic rabbits occurs independent of increased amyloid production. J Neuroinflammation 4 20.
    1. Yan Q., Zhang J., Liu H., Babu-Khan S., Vassar R., Biere A. L., et al. (2003). Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J. Neurosci. 23 7504–7509.
    1. Ying W., Fu W., Lee Y. S., Olefsky J. M. (2020). The role of macrophages in obesity-associated islet inflammation and beta-cell abnormalities. Nat Rev Endocrinol 16 81–90.
    1. Yoon D. H., Lee J. Y., Song W. (2018). Effects of Resistance Exercise Training on Cognitive Function and Physical Performance in Cognitive Frailty: A Randomized Controlled Trial. J. Nutr. Health Aging 22 944–951.
    1. Zatta P., Zambenedetti P., Stella M. P., Licastro F. (2002). Astrocytosis, microgliosis, metallothionein-I-II and amyloid expression in high cholesterol-fed rabbits. J. Alzheimers. Dis. 4 1–9.
    1. Zhang-Gandhi C. X., Drew P. D. (2007). Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes. J. Neuroimmunol. 183 50–59.
    1. Zhang L., Tang W., Chao F. L., Zhou C. N., Jiang L., Zhang Y., et al. (2020). Four-month treadmill exercise prevents the decline in spatial learning and memory abilities and the loss of spinophilin-immunoreactive puncta in the hippocampus of APP/PS1 transgenic mice. Neurobiol. Dis. 136 104723.
    1. Zhang N., Liang H., Farese R. V., Li J., Musi N., Hussey S. E. (2015). Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats. PLoS ONE 10 e0132575.
    1. Zhang Z. H., Wen L., Wu Q. Y., Chen C., Zheng R., Liu Q., et al. (2017). Long-Term Dietary Supplementation with Selenium-Enriched Yeast Improves Cognitive Impairment, Reverses Synaptic Deficits, and Mitigates Tau Pathology in a Triple Transgenic Mouse Model of Alzheimer’s Disease. J. Agric. Food Chem. 65 4970–4979.
    1. Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., et al. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108 1167–1174.

Source: PubMed

3
Subskrybuj