Peripheral Blood Lymphocyte Subsets (CD4+, CD8+ T Cells, NK Cells) in Patients with Cardiovascular and Neurological Complications after Carotid Endarterectomy

Katarzyna Kotfis, Jowita Biernawska, Małgorzata Zegan-Barańska, Maciej Żukowski, Katarzyna Kotfis, Jowita Biernawska, Małgorzata Zegan-Barańska, Maciej Żukowski

Abstract

Background: The aim of the study was to evaluate the differences in the circulating immune cells' subgroups after the atherosclerotic plaque removal in patients presenting with postoperative complications as compared to the patients without complications after carotid endarterectomy (CEA).

Methods: Patients with significant carotid atherosclerosis (n=124, age range: 44 to 87 years) who underwent CEA were enrolled in a prospective study. The immunology study using flow cytometry was performed to determine the percentages of peripheral blood T cells (CD4+, CD8+, Treg-CD4+/CD25+) and NK (natural killer) cells before and after the procedure. The data were expressed as the percentage of total lymphocytes±the standard error of mean.

Results: The mean percentage of lymphocytes (61.54%±17.50% vs. 71.82%±9.68%, p=0.030) and CD4 T lymphocytes (T helper, 38.13%±13.78% vs. 48.39%±10.24%, p=0.027) was significantly lower six hours after CEA in patients with postoperative 30-day cardiovascular and neurological complications as compared to the group without complications. On the other hand the mean NK level in the group with complications was significantly higher (21.61%±9.00% vs. 15.80%±9.31%, p=0.048).

Conclusions: The results of this study suggest that after carotid endarterectomy the percentages of circulating immune cells subsets differ in patients with and without postoperative complications.

Figures

Figure 1
Figure 1
Gated lymphocyte sub-population based on SSC (Side-Scattered light) vs. FSC (Forward-Scattered light) measurement.
Figure 2
Figure 2
(a) Tube No. 1; Dot plot of MouseIgG1 fluorescein isothiocyanate (FITC)/MouseIg2a phycoerythrin (PE) with quadrant markers, showing negative control; (b) Tube No. 1; Gating tree showing gating strategy for Fluorescence-activated cell sorting (FACS) analysis as well as parent and total cell percentages within each of the gates for negative control.
Figure 3
Figure 3
(a) Tube No. 2; Dot plot of CD3 FITC/CD19 PE with quadrant markers, differentiating lymphocytes B (CD19+) from lymphocytes T (CD3+); (b) Tube No. 2; Gating tree showing gating strategy for FACS analysis as well as parent and total cell percentages within each of the gates for CD19+ and CD3+.
Figure 4
Figure 4
(a) Tube No. 3; Dot plot of CD3 FITC/CD8 PE with quadrant markers, differentiating lymphocytes T cytotoxic (CD3+/CD8+) from all lymphocytes; (b) Tube No. 3; Gating tree showing gating strategy for FACS analysis as well as parent and total cell percentages within each of the gates for CD8+ and CD3+.
Figure 4
Figure 4
(a) Tube No. 3; Dot plot of CD3 FITC/CD8 PE with quadrant markers, differentiating lymphocytes T cytotoxic (CD3+/CD8+) from all lymphocytes; (b) Tube No. 3; Gating tree showing gating strategy for FACS analysis as well as parent and total cell percentages within each of the gates for CD8+ and CD3+.
Figure 5
Figure 5
(a) Tube No. 4; Dot plot of CD3 FITC/CD4 PE with quadrant markers, differentiating lymphocytes T helper (CD3+/CD4+) from all lymphocytes; (b) Tube No. 4; Gating tree showing gating strategy for FACS analysis as well as parent and total cell percentages within each of the gates for CD4+ and CD3+.
Figure 6
Figure 6
(a) Tube No. 5; Dot plot of CD3 FITC/CD16CD56 PE with quadrant markers, differentiating NK cells (CD3+/CD56CD16+) from all lymphocytes; (b) Tube No. 5; Gating tree showing gating strategy for FACS analysis as well as parent and total cell percentages within each of the gates for CD56CD16+ and CD3+.
Figure 7
Figure 7
(a) Tube No. 7; Dot plot of CD25 FITC/CD4 PE with quadrant markers, showing Treg CD25+/CD4+ lymphocytes; (b) Tube No. 7; Gating tree showing gating strategy for FACS analysis as well as parent and total cell percentages within each of the gates for a representative CD4+CD25+ lymphocytes.
Figure 7
Figure 7
(a) Tube No. 7; Dot plot of CD25 FITC/CD4 PE with quadrant markers, showing Treg CD25+/CD4+ lymphocytes; (b) Tube No. 7; Gating tree showing gating strategy for FACS analysis as well as parent and total cell percentages within each of the gates for a representative CD4+CD25+ lymphocytes.

References

    1. Redon J., Olsen M.H., Cooper R.S., Zurriaga O., Martinez-Beneito M.A., Laurent S., Cifkova R., Coca A., Mancia G. Stroke mortality and trends from 1990 to 2006 in 39 countries from Europe and Central Asia: Implications for control of high blood pressure. Eur. Heart J. 2011;32:1424–1431. doi: 10.1093/eurheartj/ehr045.
    1. Santulli G. Epidemiology of cardiovascular disease in the 21st century: Updated numbers and updated facts. J. Cardiovasc. Dis. 2013;1:1–2. doi: 10.3390/jcdd1010001.
    1. Libby P., Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111:3481–3488. doi: 10.1161/CIRCULATIONAHA.105.537878.
    1. Lahoute C., Herbin O., Mallat Z., Tedgui A. Adaptive immunity in atherosclerosis: Mechanisms and future therapeutic targets. Nat. Rev. Cardiol. 2011;8:348–358. doi: 10.1038/nrcardio.2011.62.
    1. Ross R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999;340:115–126. doi: 10.1056/NEJM199901143400207.
    1. Galkina E., Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu. Rev. Immunol. 2009;27:165–197. doi: 10.1146/annurev.immunol.021908.132620.
    1. Profumo E., Buttari B., Tosti M.E., Siracusano A., Ortona E., Margutti P., Capoano R., Salvati B., Rigano R. Association of intracellular pro- and anti-inflammatory cytokines in peripheral blood with the clinical or ultrasound indications for carotid endarterectomy in patients with carotid atherosclerosis. Clin. Exp. Immunol. 2008;152:120–126. doi: 10.1111/j.1365-2249.2008.03604.x.
    1. Profumo E., Siracusano A., Ortona E., Margutti P., Carra A., Costanzo A., Capoano R., Salvati B., Riganò R. Cytokine expression in circulating T lymphocytes from patients undergoing carotid endarterectomy. J. Cardiovasc. Surg. (Torino) 2003;44:237–242.
    1. Zhou X., Paulsson G., Stemme S., Hansson G.K. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J. Clin. Investig. 1998;101:1717–1725. doi: 10.1172/JCI1216.
    1. Hansson G., Jonasson L. The discovery of cellular immunity in the atherosclerotic plaque. Arterioscler. Thromb. Vasc. Biol. 2009;29:1714–1717. doi: 10.1161/ATVBAHA.108.179713.
    1. Sakaguchi S., Ono M., Setoguchi R., Yagi H., Hori S., Fehervari Z., Shimizu J., Takahashi T., Nomura T. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 2006;212:8–27. doi: 10.1111/j.0105-2896.2006.00427.x.
    1. Hedrick C.C. Lymphocytes in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015;35:253–257. doi: 10.1161/ATVBAHA.114.305144.
    1. Selathurai A., Deswaerte V., Kanellakis P., Tipping P., Toh B.-H., Bobik A., Kyaw T. Natural killer (NK) cells augment atherosclerosis by cytotoxic-dependent mechanisms. Cardiovasc. Res. 2014;102:128–137. doi: 10.1093/cvr/cvu016.
    1. Profumo E., Esposito C., Buttari B., Tosti M.E., Ortona E., Margutti P., Siracusano A., Sposato A., Costanzo A., Capoano R., et al. Intracellular expression of cytokines in peripheral blood from patients with atherosclerosis before and after carotid endarterectomy. Atherosclerosis. 2007;181:340–347.
    1. Jatta K., Wågsäter W., Norgren L., Stenberg B., Sirsjö A. Lipopolysaccharide-induced cytokine and chemokine expression in human carotid lesions. J. Vasc. Res. 2005;42:266–271. doi: 10.1159/000085721.
    1. Széplaki G., Hirschberg K., Gombos T., Varga L., Prohászka Z., Dósa E., Acsády G., Karádi I., Garred P., Entz L., et al. Early complement activation follows eversion carotid endarterectomy and correlates with the time of clamping of the carotid artery. Mol. Immunol. 2008;45:3289–3294.
    1. Vanderlaan P., Reardon C. The unusual suspects: An overview of the minor leukocyte populations in atherosclerosis. J. Lipid Res. 2005;46:829–838. doi: 10.1194/jlr.R500003-JLR200.
    1. Forget P., Collet V., Lavand’homme P., de Kock M. Does analgesia and condition influence immunity after surgery?Effects of fentanyl, ketamine and clonidine on natural killer activity at different ages. Eur. J. Anaesthesiol. 2010;27:233–240.
    1. Furie K.L., Kasner S., Adams R.J., Albers G.W., Bush R.L., Fagan S.C., Halperin J.L., Johnston S.C., Katzan I., Kernan W.N., et al. Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack; a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:227–276.
    1. Brott T.G., Halperin J.L., Abbara S., Bacharach J.M., Barr J.D., Bush R.L., Cates C.U., Creager M.A., Fowler S.B., Friday G., et al. 2011ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS; Guideline on the management of patients with extracranial carotid and vertebral artery disease: Executive summary. J. Am. Coll. Cardiol. 2011;57:1002–1044.
    1. Liapis C.D., Bell P.R., Mikhailidis D., Sivenius J., Nicolaides A., Fernandes e Fernandes J., Biasi G., Norgren L., ESVS Guidelines Collaborators ESVS Guidelines Collaborators; European Society of Vascular Surgery (ESVS) guidelines. Invasive treatment for carotid stenosis: Indications, techniques. Eur. J. Vasc. Endovasc. Surg. 2009;37:1–19. doi: 10.1016/j.ejvs.2008.11.006.
    1. Whitman S.C., Rateri D.L., Szilvassy S.J., Yokoyama W., Daugherty A. Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice. Arterioscler. Thromb. Vasc. Biol. 2004;24:1049–1054. doi: 10.1161/01.ATV.0000124923.95545.2c.
    1. Linton M.F., Major A.S., Fazio S. Proatherogenic role for NK cells revealed. Arterioscler. Thromb. Vasc. Biol. 2004;24:992–994. doi: 10.1161/01.ATV.0000128896.45976.f0.
    1. Clerc G., Rouz P.M. Lymphocyte subsets in severe atherosclerosis before revascularization. Ann. Intern. Med. 1997;126:1004–1005. doi: 10.7326/0003-4819-126-12-199706150-00028.
    1. Bruunsgaard H., Pedersen A.N., Schroll M., Skinhøj P., Pedersen B.K. Decreased natural killer cell activity is associated with atherosclerosis in elderly humans. Exp. Gerontol. 2001;37:127–136. doi: 10.1016/S0531-5565(01)00162-0.
    1. Han S., Liu P., Zhang W., Bu L., Shen M., Li H., Fan Y.H., Cheng K., Cheng H.X., Li C.X., et al. The opposite-direction modulation of CD4+CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clin. Immunol. 2007;124:90–97.
    1. Binder C., Chang M., Shaw P., Miller Y.I., Hartvigsen K., Dewan A., Witztum J.L. Innate and acquired immunity in atherogenesis. Nat. Med. 2002;8:1218–1226. doi: 10.1038/nm1102-1218.
    1. Veillard N.R., Steffens S., Burger F., Pelli G., Mach F. Differential expression patterns of proinflammatory and anti-inflammatory mediators during atherogenesis in mice. Arterioscler. Thromb. Vasc. Biol. 2004;24:2339–2344. doi: 10.1161/01.ATV.0000146532.98235.e6.
    1. Stemme S., Holm J., Hansson G.K. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arterioscler. Thromb. 1992;12:206–211. doi: 10.1161/01.ATV.12.2.206.
    1. Zhou X., Stemme S., Hansson G.K. Evidence for a local immune response in atherosclerosis: CD4+ T cells infiltrate lesions of apo E-deficient mice. Am. J. Pathol. 1996;149:359–366.
    1. Baidya S.G., Zeng Q.T. Helper T cells and atherosclerosis: The cytokine web. Postgrad. Med. J. 2005;81:746–752. doi: 10.1136/pgmj.2004.029827.
    1. Piccirillo C.A., Shevach E.M. Cutting edge: Control of CD8+ T cell activation by CD4+CD25+ T immunoregulatory cells. J. Immunol. 2001;167:1137. doi: 10.4049/jimmunol.167.3.1137.
    1. Sakaguchi S. Regulatory T cells: Key controllers of immunologic self-tolerance. Cell. 2000;101:455. doi: 10.1016/S0092-8674(00)80856-9.
    1. Shevach E.M. Regulatory T cells in autoimmunity. Annu. Rev. Immunol. 2000;18:423. doi: 10.1146/annurev.immunol.18.1.423.
    1. Ait-Oufella H., Salomon B., Potteaux S., Robertson A.K., Gourdy P., Zoll J., Merval R., Esposito B., Cohen J.L., Fisson S., et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 2006;12:178–180.
    1. Mallat Z., Ait-Oufella H., Tedgui A. Regulatory T-cell immunity in atherosclerosis. Trends Cardiovasc. Med. 2007;17:113–118. doi: 10.1016/j.tcm.2007.03.001.
    1. Caligiuri G., Nicoletti A. Tregs and human atherothrombotic disease. Arterioscler. Thromb. Vasc. Biol. 2010;30:1679–1681. doi: 10.1161/ATVBAHA.110.209668.
    1. Yuan Q., Chen Z., Santulli G., Gu L., Yang Z.-G., Yuan Z.-Q., Zhao Y.-T., Xin H.-B., Deng K.-Y., Wang S.-Q., et al. Functional role of Calstabin2 in age-related cardiac alterations. FSci. Rep. 2014;4:7425.
    1. Wronska A., Kurkowska-Jastrzębska I., Santulli G. Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiol. 2015;213:60–83. doi: 10.1111/apha.12416.
    1. Kudumula C.R. Regulatory noncoding RNAs in cardiovascular disease: Shedding light on “Dark Matter”. J. Cardiovasc. Dis. 2015;3:301–307.
    1. Santulli G., Wronska A., Uryu K., Diacovo T.G., Gao M., Marx S.O., Kitajewski J., Chilton J.M., Akat K.M., Tuschl T., et al. A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. J. Clin. Investig. 2014;124:4102–4114.
    1. Adams H.P., Bendixen B.H., Kappelle L.J., Biller J., Love B.B., Gordon D.L., Marsh E.E., 3rd Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke. 1993;24:35–41.

Source: PubMed

3
Subskrybuj