Quantification and reliability of [11C]VC - 002 binding to muscarinic acetylcholine receptors in the human lung - a test-retest PET study in control subjects

Zsolt Cselényi, Aurelija Jucaite, Cecilia Kristensson, Per Stenkrona, Pär Ewing, Andrea Varrone, Peter Johnström, Magnus Schou, Ana Vazquez-Romero, Mohammad Mahdi Moein, Martin Bolin, Jonathan Siikanen, Pär Grybäck, Bengt Larsson, Christer Halldin, Ken Grime, Ulf G Eriksson, Lars Farde, Zsolt Cselényi, Aurelija Jucaite, Cecilia Kristensson, Per Stenkrona, Pär Ewing, Andrea Varrone, Peter Johnström, Magnus Schou, Ana Vazquez-Romero, Mohammad Mahdi Moein, Martin Bolin, Jonathan Siikanen, Pär Grybäck, Bengt Larsson, Christer Halldin, Ken Grime, Ulf G Eriksson, Lars Farde

Abstract

Background: The radioligand [11C]VC-002 was introduced in a small initial study long ago for imaging of muscarinic acetylcholine receptors (mAChRs) in human lungs using positron emission tomography (PET). The objectives of the present study in control subjects were to advance the methodology for quantification of [11C]VC-002 binding in lung and to examine the reliability using a test-retest paradigm. This work constituted a self-standing preparatory step in a larger clinical trial aiming at estimating mAChR occupancy in the human lungs following inhalation of mAChR antagonists.

Methods: PET measurements using [11C]VC-002 and the GE Discovery 710 PET/CT system were performed in seven control subjects at two separate occasions, 2-19 days apart. One subject discontinued the study after the first measurement. Radioligand binding to mAChRs in lung was quantified using an image-derived arterial input function. The total distribution volume (VT) values were obtained on a regional and voxel-by-voxel basis. Kinetic one-tissue and two-tissue compartment models (1TCM, 2TCM), analysis based on linearization of the compartment models (multilinear Logan) and image analysis by data-driven estimation of parametric images based on compartmental theory (DEPICT) were applied. The test-retest repeatability of VT estimates was evaluated by absolute variability (VAR) and intraclass correlation coefficients (ICCs).

Results: The 1TCM was the statistically preferred model for description of [11C]VC-002 binding in the lungs. Low VAR (< 10%) across analysis methods indicated good reliability of the PET measurements. The VT estimates were stable after 60 min.

Conclusions: The kinetic behaviour and good repeatability of [11C]VC-002 as well as the novel lung image analysis methodology support its application in applied studies on drug-induced mAChR receptor occupancy and the pathophysiology of pulmonary disorders.

Trial registration: ClinicalTrials.gov identifier: NCT03097380, registered: 31 March 2017.

Keywords: Lungs; Muscarinic acetylcholine receptors; Positron emission tomography; Test-retest; [11C]VC-002.

Conflict of interest statement

ZC, AJ, PJ, MS, LF, KG, PE, CK and UGE are employees of AstraZeneca and may own stock or stock options. The other authors have no disclosures to report.

Figures

Fig. 1
Fig. 1
Coronal and axial summation PET images (0–93 min) in thorax after intravenous injection of the radioligand [11C]VC-002 in healthy subject #1. Coloured PET images in standardized uptake value units (SUV) are overlaid on structural CT images in grey scale
Fig. 2
Fig. 2
a Time-radioactivity curves (TACs, mean ± SD) in standardized uptake value units (SUV) for the lung after i.v. injection of [11C]VC-002. b TACs in lung, corrected for radioactivity in pulmonary blood volume. c TACs in plasma. d Lung-to-plasma ratio of TACs
Fig. 3
Fig. 3
a Radiochromatogram from gradient HPLC analysis of human plasma at 30 min after I.V. injection of [11C]VC-002 in subject #1. The larger peak to the right represents unchanged [11C]VC-002, whereas the left peak represents a radioactively labelled metabolite that is more polar than [11C]VC-002. b Time course for the fraction (%) of radioactivity in plasma representing unchanged [11C]VC-002 (mean fitted curves with SD indicated using error bars). An empirical model using the Richards equation [25] was fitted to the measured parent fraction
Fig. 4
Fig. 4
a Radioactivity in lung tissue vs time (not corrected for blood volume) after I.V. injection of [11C]VC-002 in subject #1 and 1TCM, 2TCM fits. b Illustration of Logan’s linear graphical analysis for subject #1 (1st PET). c Regression of VT parameter estimates from MLLogan vs. 1TCM
Fig. 5
Fig. 5
Representative parametric lung images obtained from DEPICT analysis of [11C]VC-002 binding in subject #1. Note that the heart and liver were not included in the generation of parametric images. a Fractional blood volume (Vb). b Kinetic rate constant K1, showing the radioligand influx rate from blood to tissue that is proportional to blood flow and the radioligand extraction coefficient. c Total distribution volume (VT), which is the main outcome parameter of the analysis. d Compartmental model order (MO), showing the estimated number of pharmacokinetic compartments in tissue that is sufficient to adequately describe the data
Fig. 6
Fig. 6
Time stability of VT measurements for [11C]VC-002. The effect of progressive truncation of measurement time on: a the lung VT mean estimates, and b their repeatability (absolute variability, VAR). Comparison of time stability between one-tissue compartment model (1TCM) and multi-linear Logan graphical analysis (MLLogan)

References

    1. Lee CM, Farde L. Using positron emission tomography to facilitate CNS drug development. Trends Pharmacol Sci. 2006;27:310–316. doi: 10.1016/j.tips.2006.04.004.
    1. Siva S, Callahan JW, Kron T, Chesson B, Barnett SA, Macmanus MP, et al. Respiratory-gated (4D) FDG-PET detects tumour and normal lung response after stereotactic radiotherapy for pulmonary metastases. Acta Oncol. 2015;54:1105–1112. doi: 10.3109/0284186X.2015.1027409.
    1. Chen DL, Bedient TJ, Kozlowski J, Rosenbluth DB, Isakow W, Ferkol TW, et al. [18F]fluorodeoxyglucose positron emission tomography for lung antiinflammatory response evaluation. Am J Respir Crit Care Med. 2009;180:533–539. doi: 10.1164/rccm.200904-0501OC.
    1. Telo S, Calderoni L, Vichi S, Zagni F, Castellucci P, Fanti S. Review: Alternative and New Radiopharmaceutical Agents for Lung Cancer. Curr Radiopharm. 2019. 10.2174/1874471013666191223151402.
    1. Bergström M, Nordberg A, Lunell E, Antoni G, Långström B. Regional deposition of inhaled 11C-nicotine vapor in the human airway as visualized by positron emission tomography. Clin Pharmacol Ther. 1995;57:309–317. doi: 10.1016/0009-9236(95)90156-6.
    1. Berridge MS, Lee Z, Heald DL. Pulmonary distribution and kinetics of inhaled [11C]triamcinolone acetonide. J Nucl Med. 2000;41:1603–1611.
    1. van Waarde A, Maas B, Doze P, Slart RH, Frijlink HW, Vaalburg W, Elsinga PH. Positron emission tomography studies of human airways using an inhaled beta-adrenoceptor antagonist, S-11C-CGP 12388. Chest. 2005;128:3020–3027. doi: 10.1378/chest.128.4.3020.
    1. Hayes MJ1, Qing F, Rhodes CG, Rahman SU, Ind PW, Sriskandan S, et al. In vivo quantification of human pulmonary beta-adrenoceptors: effect of beta-agonist therapy. Am J Respir Crit Care Med. 1996;154:1277-83.
    1. Visser TJ, van Waarde A, van der Mark TW, Kraan J, Ensing K, Willemsen AT, et al. Detection of muscarinic receptors in the human lung using PET. J Nucl Med. 1999;40:1270–1276.
    1. Madar I, Bencherif B, Lever J, Heitmiller RF, Yang SC, Brock M, et al. Imaging delta- and mu-opioid receptors by PET in lung carcinoma patients. J Nucl Med. 2007;48:207–213. doi: 10.2967/jnumed.106.038778.
    1. Bahce I, Smit EF, Lubberink M, van der Veldt AA, Yaqub M, Windhorst AD, et al. Development of [(11)C]erlotinib positron emission tomography for in vivo evaluation of EGF receptor mutational status. Clin Cancer Res. 2013;19:183–189. doi: 10.1158/1078-0432.CCR-12-0289.
    1. Urbano FL, Pascual RM. Contemporary issues in the care of patients with chronic obstructive pulmonary disease. J Manag Care Pharm. 2005;11(5 Suppl A):S2-13;quiz S14-6.
    1. Restrepo RD. Use of inhaled anticholinergic agents in obstructive airway disease. Respir Care. 2007;52:833–851.
    1. Cazzola M1, Page CP, Calzetta L, Matera MG. Pharmacology and therapeutics of bronchodilators. Pharmacol Rev. 2012;64:450-504.
    1. Visser TJ, van Waarde A, Jansen TJ, Visser GM, van der Mark TW, Kraan J, et al. Stereoselective synthesis and biodistribution of potent [11C]-labeled antagonists for positron emission tomography imaging of muscarinic receptors in the airways. J Med Chem. 1997;40:117–124. doi: 10.1021/jm960374w.
    1. Schou M, Ewing P, Cselényi Z, Fridén M, Takano A, Halldin C. FardeL. Pulmonary PET imaging confirms preferential lung target occupancy of an inhaled bronchodilator. EJNMMI Res. 2019;9:9.
    1. Gunn RN, Gunn SR, Turkheimer FE, Aston JA, Cunningham VJ. Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling. J Cereb Blood Flow Metab. 2002;22:1425–1439. doi: 10.1097/01.wcb.0000045042.03034.42.
    1. Moein MM, Nakao R, Abdel-Rehim M, Schou M, Halldin C. Sample preparation techniques for radiometabolite analysis of positron emission tomography radioligands; trends, progress, limitations and future prospects. TrAC. 2019;110:1–7.
    1. Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab. 1996;16:42–52. doi: 10.1097/00004647-199601000-00005.
    1. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16:834–840. doi: 10.1097/00004647-199609000-00008.
    1. Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. 2002;22:1271–1281. doi: 10.1097/01.WCB.0000038000.34930.4E.
    1. Parsey RV, Slifstein M, Hwang D-R, Abi-Dargham A, Simpson N, Mawlawi O, et al. Validation and reproducibility of measurement of 5-HT1A receptor parameters with [carbonyl-11C]WAY-100635 in humans: comparison of arterial and reference tissue input functions. J Cereb Blood Flow Metab. 2000;20:1111–1133. doi: 10.1097/00004647-200007000-00011.
    1. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–428. doi: 10.1037/0033-2909.86.2.420.
    1. Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. AC-19:716-23.
    1. Bindslev N. Hill in hell. In: Bindslev N. Drug-acceptor interactions. Co-Action Publishing; 2008. p. 257–282.
    1. Nyberg S, Farde L, Halldin C. Test-retest reliability of central [11C]raclopride binding at high D2 receptor occupancy. A PET study in haloperidol-treated patients. Psychiatry Res. 1996;67:163–171. doi: 10.1016/0925-4927(96)02921-6.
    1. Nord M, Finnema SJ, Schain M, Halldin C, Farde L. Test-retest reliability of [11C]AZ10419369 binding to 5-HT1B receptors in human brain. Eur J Nucl Med Mol Imaging. 2014;41:301–307. doi: 10.1007/s00259-013-2529-1.
    1. Matheson GJ, Stenkrona P, Cselényi Z, Plavén-Sigray P, Halldin C, Farde L, Cervenka S. Reliability of volumetric and surface-based normalisation and smoothing techniques for PET analysis of the cortex: A test-retest analysis using [11C]SCH-23390. Neuroimage. 2017;155:344–353. doi: 10.1016/j.neuroimage.2017.04.031.
    1. Cheebsumon P, Velasquez LM, Hoekstra CJ, Hayes W, Kloet RW, Hoetjes NJ, et al. Measuring response to therapy using FDG PET: semi-quantitative and full kinetic analysis. Eur J Nucl Med Mol Imaging. 2011;38:832–842. doi: 10.1007/s00259-010-1705-9.
    1. Mak JC, Barnes PJ. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung. Am Rev Respir Dis. 1990;141:1559–1568. doi: 10.1164/ajrccm/141.6.1559.
    1. Farde L, Eriksson L, Blomquist G, Halldin C. Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET--a comparison to the equilibrium analysis. J Cereb Blood Flow Metab. 1989;9:696–708. doi: 10.1038/jcbfm.1989.98.
    1. Burgen ASV. The role of ionic interactions at the muscarinic receptor. Br J Pharmacol. 1965;25:4–7.
    1. Hanin I, Jenden DJ, Cho AK. The influence of pH on the muscarinic action of oxotremorine, arecoline, pilocarpine, and their quaternary ammonium analogues. Mol Pharmacol. 1966;2:352–359.
    1. Jones HA, Marino PS, Shakur BH, Morrell NW. In vivo assessment of lung inflammatory cell activity in patients with COPD and asthma. Eur Respir J. 2003;21(4):567–573. doi: 10.1183/09031936.03.00048502.
    1. Coello C, Fisk M, Mohan D, Wilson FJ, Brown AP, Polkey MI, et al. Quantitative analysis of dynamic 18F-FDG PET/CT for measurement of lung inflammation. EJNMMI Res. 2017;7:47. doi: 10.1186/s13550-017-0291-2.
    1. Chen DL, Cheriyan J, Chilvers ER, Choudhury G, Coello C, Connell M, et al. Quantification of Lung PET Images: Challenges and Opportunities. J Nucl Med. 2017;58:201–207. doi: 10.2967/jnumed.116.184796.

Source: PubMed

3
Subskrybuj