Reductions in urinary metabolites of exposure to household air pollution in pregnant, rural Guatemalan women provided liquefied petroleum gas stoves

John R Weinstein, Anaité Diaz-Artiga, Neal Benowitz, Lisa M Thompson, John R Weinstein, Anaité Diaz-Artiga, Neal Benowitz, Lisa M Thompson

Abstract

Background: Household air pollution from solid fuels is a leading risk factor for morbidity and mortality worldwide. Pregnant women's exposure to polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs), two components of solid-fuel smoke, is associated with adverse birth outcomes. Even with improved solid-fuel stoves, exposure to PAHs and VOCs remains high. Therefore, cleaner cooking fuels need to be prioritized.

Objective: We aimed to quantify exposure reduction to PAHs and VOCs among pregnant women in rural Guatemala with a liquefied petroleum gas (LPG) stove intervention.

Materials and methods: Urine from pregnant women (N = 50) was collected twice: at <20 weeks gestation, when women cooked exclusively with wood, and 6-8 weeks after receiving an LPG stove. Metabolites of four PAHs and eight VOCs were analyzed. Concurrent with urine collection, personal 48-h PM2.5 exposure was measured.

Results: Women cooking exclusively with wood were exposed to high levels of particulate matter (PM2.5), which was reduced by 57% with the LPG stove. Urinary concentrations of total PAH metabolites (-37%), PMA (benzene metabolite; -49%), and CNEMA (acrylonitrile metabolite; -51%) were reduced. However, recent use of a wood-fired sauna bath led to large increases in excretion of urinary toxicant metabolites (+66-135%).

Conclusions: This is the first study to report PAH and VOC reductions from an LPG stove intervention introduced during pregnancy. However, other sources of air pollution minimized the gains seen from using an LPG stove. Thus, all sources of air pollution must be addressed in concert to reduce exposures to levels that protect health.

Trial registration: ClinicalTrials.gov NCT02812914.

Keywords: Household air pollution; LPG stoves; Polycyclic aromatic hydrocarbons; Solid fuel use; Urinary biomarkers; Volatile organic compounds.

Conflict of interest statement

Competing interests: We declare that we have no financial or non-financial competing interests related to the study.

Figures

Figure 1.
Figure 1.
Median and inter-quartile range of total PAH urinary metabolite concentration by fuel type, at baseline with wood stove (n=50) and at follow-up with exclusive LPG use (n=11) or mixed wood and LPG stove use (n=37). * Indicates significant difference between median concentrations at follow-up period between those with exclusive LPG use and mixed wood and LPG stove use at follow-up by Wilcoxon rank sum test (*

Figure 2.

Spearman correlation coefficients of urinary…

Figure 2.

Spearman correlation coefficients of urinary concentrations of PAH and VOC metabolites at baseline…

Figure 2.
Spearman correlation coefficients of urinary concentrations of PAH and VOC metabolites at baseline and follow-up.
Figure 2.
Figure 2.
Spearman correlation coefficients of urinary concentrations of PAH and VOC metabolites at baseline and follow-up.

References

    1. IHME (Institute for Health Metrics and Evaluation). GBD Compare [Internet]. 2017. Available from:
    1. WHO Population using solid fuels (estimates): Data by country. Global Health Observatory data repository [Internet]. 2013. [cited 2016 May 20]; Available from:
    1. G. B. D. Risk Factors Collaborators, Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015. December 5;386(10010):2287–323.
    1. Preker AS, Adeyi OO, Lapetra MG, Simon DC, Keuffel E. Health Care Expenditures Associated With Pollution: Exploratory Methods and Findings. Ann Glob Health. 2016. September;82(5):711–21.
    1. Patelarou E, Kelly FJ. Indoor exposure and adverse birth outcomes related to fetal growth, miscarriage and prematurity-a systematic review. International journal of environmental research and public health. 2014. June;11(6):5904–33.
    1. Titcombe ME, Simcik M. Personal and indoor exposure to PM(2).(5) and polycyclic aromatic hydrocarbons in the southern highlands of Tanzania: a pilot-scale study. Environ Monit Assess. 2011. September;180(1–4):461–76.
    1. Vanker A, Barnett W, Nduru PM, Gie RP, Sly PD, Zar HJ. Home environment and indoor air pollution exposure in an African birth cohort study. Sci Total Environ. 2015. December 1;536:362–7.
    1. Shen G, Preston W, Ebersviller SM, Williams C, Faircloth JW, Jetter JJ, et al. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves. Energy Fuels. 2017;31(3):3081–90.
    1. Choi H, Rauh V, Garfinkel R, Tu Y, Perera FP. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and risk of intrauterine growth restriction. Environ Health Perspect. 2008. May;116(5):658–65.
    1. Padula AM, Noth EM, Hammond SK, Lurmann FW, Yang W, Tager IB, et al. Exposure to airborne polycyclic aromatic hydrocarbons during pregnancy and risk of preterm birth. Environmental research. 2014. November;135:221–6.
    1. Ren A, Qiu X, Jin L, Ma J, Li Z, Zhang L, et al. Association of selected persistent organic pollutants in the placenta with the risk of neural tube defects. Proc Natl Acad Sci U S A. 2011. August 2;108(31):12770–5.
    1. Wang B, Jin L, Ren A, Yuan Y, Liu J, Li Z, et al. Levels of Polycyclic Aromatic Hydrocarbons in Maternal Serum and Risk of Neural Tube Defects in Offspring. Environ Sci Technol. 2015. January 6;49(1):588–96.
    1. Lupo PJ, Langlois PH, Reefhuis J, Lawson CC, Symanski E, Desrosiers TA, et al. Maternal Occupational Exposure to Polycyclic Aromatic Hydrocarbons: Effects on Gastroschisis among Offspring in the National Birth Defects Prevention Study. Environ Health Perspect. 2012. June;120(6):910–5.
    1. Langlois PH, Hoyt AT, Desrosiers TA, Lupo PJ, Lawson CC, Waters MA, et al. Maternal occupational exposure to polycyclic aromatic hydrocarbons and small for gestational age offspring. Occupational and Environmental Medicine. 2014. August;71(8):529–35.
    1. Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, Barr D, et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect. 2003. February;111(2):201–5.
    1. Tang D, Li TY, Chow JC, Kulkarni SU, Watson JG, Ho SS, et al. Air pollution effects on fetal and child development: a cohort comparison in China. Environ Pollut. 2014. February;185:90–6.
    1. Jedrychowski WA, Majewska R, Spengler JD, Camann D, Roen EL, Perera FP. Prenatal exposure to fine particles and polycyclic aromatic hydrocarbons and birth outcomes: a two-pollutant approach. Int Arch Occup Environ Health. 2017. April;90(3):255–64.
    1. Yang P, Gong Y-J, Cao W-C, Wang R-X, Wang Y-X, Liu C, et al. Prenatal urinary polycyclic aromatic hydrocarbon metabolites, global DNA methylation in cord blood, and birth outcomes: A cohort study in China. Environmental Pollution. 2018. March;234:396–405.
    1. Perera F, Li TY, Zhou ZJ, Yuan T, Chen YH, Qu L, et al. Benefits of reducing prenatal exposure to coal-burning pollutants to children’s neurodevelopment in China. Environ Health Perspect. 2008. October;116(10):1396–400.
    1. Perera FP, Li Z, Whyatt R, Hoepner L, Wang S, Camann D, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics. 2009. August;124(2):e195–202.
    1. Sorensen M, Andersen AM, Raaschou-Nielsen O. Non-occupational exposure to paint fumes during pregnancy and fetal growth in a general population. Environ Res. 2010. May;110(4):383–7.
    1. Chang M, Park H, Ha M, Hong Y-C, Lim Y-H, Kim Y, et al. The effect of prenatal TVOC exposure on birth and infantile weight: the Mothers and Children’s Environmental Health study. Pediatric Research. 2017. September;82(3):423–8.
    1. Chang M, Lee D, Park H, Ha M, Hong Y-C, Kim Y, et al. Prenatal TVOCs exposure negatively influences postnatal neurobehavioral development. Science of The Total Environment. 2018. March;618:977–81.
    1. Li Z, Sjodin A, Romanoff LC, Horton K, Fitzgerald CL, Eppler A, et al. Evaluation of exposure reduction to indoor air pollution in stove intervention projects in Peru by urinary biomonitoring of polycyclic aromatic hydrocarbon metabolites. Environ Int. 2011. October;37(7):1157–63.
    1. Riojas-Rodriguez H, Schilmann A, Marron-Mares AT, Masera O, Li Z, Romanoff L, et al. Impact of the improved patsari biomass stove on urinary polycyclic aromatic hydrocarbon biomarkers and carbon monoxide exposures in rural Mexican women. Environ Health Perspect. 2011. September;119(9):1301–7.
    1. Li Z, Commodore A, Hartinger S, Lewin M, Sjodin A, Pittman E, et al. Biomonitoring Human Exposure to Household Air Pollution and Association with Self-reported Health Symptoms - A Stove Intervention Study in Peru. Environ Int. 2016. December;97:195–203.
    1. Torres-Dosal A, Perez-Maldonado IN, Jasso-Pineda Y, Martinez Salinas RI, Alegria-Torres JA, Diaz-Barriga F. Indoor air pollution in a Mexican indigenous community: evaluation of risk reduction program using biomarkers of exposure and effect. Sci Total Environ. 2008. February 15;390(2–3):362–8.
    1. WHO. WHO Indoor Air Quality Guidelines: Household Fuel Combustion. Geneva: World Health Organization; 2014.
    1. Weinstein JR, Asteria-Penaloza R, Diaz-Artiga A, Davila G, Hammond SK, Ryde IT, et al. Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds among recently pregnant rural Guatemalan women cooking and heating with solid fuels. Int J Hyg Environ Health. 2017. June;220(4):726–35.
    1. Thompson LM, Diaz-Artiga A, Weinstein JR, Handley MA. Designing a behavioral intervention using the COM-B model and the theoretical domains framework to promote gas stove use in rural Guatemala: a formative research study. BMC Public Health. 2018. February 14;18(1):253.
    1. Ministerio de Salud Publica y Asistencia Social(MSPAS), Instituto Nacional de Estadistica(INE), Instituto Nacional de EstadisticaInternational I. Encuestra de Salud Materno Infantil 2014–2015. Informe Final. Guatemala: 2017.
    1. WHO, IARC (International Agency for Research onCancer). Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2010;92.
    1. Alwis KU, Blount BC, Britt AS, Patel D, Ashley DL. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal Chim Acta. 2012. October 31;750:152–60.
    1. Jacob P 3rd, Wilson M, Benowitz NL. Determination of phenolic metabolites of polycyclic aromatic hydrocarbons in human urine as their pentafluorobenzyl ether derivatives using liquid chromatography-tandem mass spectrometry. Anal Chem. 2007. January 15;79(2):587–98.
    1. Lam N, Nicas M, Ruiz-Mercado I, Thompson LM, Romero C, Smith KR. Non-invasive measurement of carbon monoxide burden in Guatemalan children and adults following wood-fired temazcal (sauna-bath) use. J Environ Monit. 2011. August;13(8):2172–81.
    1. Carter E, Archer-Nicholls S, Ni K, Lai AM, Niu H, Secrest MH, et al. Seasonal and Diurnal Air Pollution from Residential Cooking and Space Heating in the Eastern Tibetan Plateau. Environ Sci Technol. 2016. August 2;50(15):8353–61.
    1. Ni K, Carter E, Schauer JJ, Ezzati M, Zhang Y, Niu H, et al. Seasonal variation in outdoor, indoor, and personal air pollution exposures of women using wood stoves in the Tibetan Plateau: Baseline assessment for an energy intervention study. Environ Int. 2016. September;94:449–57.
    1. Benowitz NL, Gan Q, Goniewicz ML, Lu W, Xu J, Li X, et al. Different profiles of carcinogen exposure in Chinese compared with US cigarette smokers. Tob Control. 2015. December;24(e4):e258–63.
    1. Pruneda-Alvarez LG, Perez-Vazquez FJ, Salgado-Bustamante M, Martinez-Salinas RI, Pelallo-Martinez NA, Perez-Maldonado IN. Exposure to indoor air pollutants (polycyclic aromatic hydrocarbons, toluene, benzene) in Mexican indigenous women. Indoor Air. 2012. April;22(2):140–7.
    1. Choi H, Wang L, Lin X, Spengler JD, Perera FP. Fetal window of vulnerability to airborne polycyclic aromatic hydrocarbons on proportional intrauterine growth restriction. PLoS One. 2012;7(4):e35464.
    1. St Helen G, Jacob P 3rd, Peng M, Dempsey DA, Hammond SK, Benowitz NL. Intake of toxic and carcinogenic volatile organic compounds from secondhand smoke in motor vehicles. Cancer Epidemiol Biomarkers Prev. 2014. December;23(12):2774–82.
    1. Thompson LM, Clark M, Cadman B, Canuz E, Smith KR. Exposures to high levels of carbon monoxide from wood-fired temazcal (steam bath) use in highland Guatemala. Int J Occup Environ Health. 2011. April;17(2):103–12.
    1. Lemieux PM, Lutes CC, Santoianni DA. Emissions of organic air toxics from open burning: a comprehensive review. Progress in Energy and Combustion Science. 2004. January 1;30(1):1–32.
    1. Li Z, Romanoff L, Bartell S, Pittman EN, Trinidad DA, McClean M, et al. Excretion profiles and half-lives of ten urinary polycyclic aromatic hydrocarbon metabolites after dietary exposure. Chem Res Toxicol. 2012. July 16;25(7):1452–61.
    1. McClean MD, Rinehart RD, Ngo L, Eisen EA, Kelsey KT, Wiencke JK, et al. Urinary 1-hydroxypyrene and polycyclic aromatic hydrocarbon exposure among asphalt paving workers. Ann Occup Hyg. 2004. August;48(6):565–78.
    1. Lisouza FA, Owuor OP, Lalah JO. Variation in indoor levels of polycyclic aromatic hydrocarbons from burning various biomass types in the traditional grass-roofed households in Western Kenya. Environ Pollut. 2011. July;159(7):1810–5.

Source: PubMed

3
Subskrybuj