Proton Image-guided Radiation Assignment for Therapeutic Escalation via Selection of locally advanced head and neck cancer patients [PIRATES]: A Phase I safety and feasibility trial of MRI-guided adaptive particle radiotherapy

Lisanne V van Dijk, Steven J Frank, Ying Yuan, Brandon Gunn, Amy C Moreno, Abdallah S R Mohamed, Kathryn E Preston, Yun Qing, Michael T Spiotto, William H Morrison, Anna Lee, Jack Phan, Adam S Garden, David I Rosenthal, Johannes A Langendijk, Clifton D Fuller, Lisanne V van Dijk, Steven J Frank, Ying Yuan, Brandon Gunn, Amy C Moreno, Abdallah S R Mohamed, Kathryn E Preston, Yun Qing, Michael T Spiotto, William H Morrison, Anna Lee, Jack Phan, Adam S Garden, David I Rosenthal, Johannes A Langendijk, Clifton D Fuller

Abstract

Introduction: Radiation dose-escalation for head and neck cancer (HNC) patients aiming to improve cure rates is challenging due to the increased risk of unacceptable treatment-induced toxicities. With "Proton Image-guided Radiation Assignment for Therapeutic Escalation via Selection of locally advanced head and neck cancer patients" (PIRATES), we present a novel treatment approach that is designed to facilitate dose-escalation while minimizing the risk of dose-limiting toxicities for locally advanced HPV-negative HNC patients. The aim of this Phase I trial is to assess the safety & feasibility of PIRATES approach.

Methods: The PIRATES protocol employs a multi-faceted dose-escalation approach to minimize the risk of dose-limiting toxicities (DLTs): 1) sparing surrounding normal tissue from extraneous dose with intensity-modulated proton therapy, 2) mid-treatment hybrid hyper-fractionation for radiobiologic normal tissue sparing; 3) Magnetic Resonance Imaging (MRI) guided mid-treatment boost volume adaptation, and 4) iso-effective restricted organ-at-risk dosing to mucosa and bone tissues.The time-to-event Bayesian optimal interval (TITE-BOIN) design is employed to address the challenge of the long DLT window of 6 months and find the maximum tolerated dose. The primary endpoint is unacceptable radiation-induced toxicities (Grade 4, mucositis, dermatitis, or Grade 3 myelopathy, osteoradionecrosis) occurring within 6 months following radiotherapy. The second endpoint is any grade 3 toxicity occurring in 3-6 months after radiation.

Discussion: The PIRATES dose-escalation approach is designed to provide a safe avenue to intensify local treatment for HNC patients for whom therapy with conventional radiation dose levels is likely to fail. PIRATES aims to minimize the radiation damage to the tissue surrounding the tumor volume with the combination of proton therapy and adaptive radiotherapy and within the high dose tumor volume with hybrid hyper-fractionation and not boosting mucosal and bone tissues. Ultimately, if successful, PIRATES has the potential to safety increase local control rates in HNC patients with high loco-regional failure risk.Trial registration: ClinicalTrials.gov ID: NCT04870840; Registration date: May 4, 2021.Netherlands Trial Register ID: NL9603; Registration date: July 15, 2021.

Keywords: Head and neck cancer; Hyper-fractionation; Image guided RT; Phase I trial; Proton therapy; Radiation dose-escalation; Toxicity.

© 2021 Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology.

Figures

Fig. 2
Fig. 2
Dose-escalation planning example with proton therapy. Compared to photon therapy plan (left), both proton therapy plans without (middle) and with tumor dose-escalation (right) show much lower doses to the surrounding normal tissues.
Fig. 1
Fig. 1
State-of-the-art technology integration used in PIRATES to allow for safe dose-escalation.
Fig. 3
Fig. 3
Phase I trial schema and dose-escalation levels.
Fig. 4
Fig. 4
Two-part radiation schedule (for boost dose level 80.5 Gy). Three target volumes are defined: conventional low dose level to elective lymph nodes (in blue CTV57), conventional high dose clinical tumor volume determined at start (in green CTV70) and the boost adapted, after shrinkage (arrows), to gross tumor volume at week 4 (in red GTV80). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

References

    1. Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global Cancer Statistics, 2012. CA Cancer J Clin. 2015;65:87–108.
    1. Langendijk J.A., Doornaert P., Verdonck-de Leeuw I.M., Leemans C.R., Aaronson N.K., Slotman B.J. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol. 2008;26:3770–3776.
    1. Romesser P.B., Cahlon O., Scher E., Zhou Y., Berry S.L., Rybkin A., et al. Proton beam radiation therapy results in significantly reduced toxicity compared with intensity-modulated radiation therapy for head and neck tumors that require ipsilateral radiation. Radiother Oncol. 2016;118:286–292.
    1. De Felice F., Polimeni A., Valentini V., Brugnoletti O., Cassoni A., Greco A., et al. Radiotherapy controversies and prospective in head and neck cancer: a literature-based critical review. Neoplasia (United States) 2018;20:227–232.
    1. Gunn G.B., Blanchard P., Garden A.S., Zhu X.R., Fuller C.D., Mohamed A.S., et al. Clinical outcomes and patterns of disease recurrence after intensity modulated proton therapy for oropharyngeal squamous carcinoma. Int J Radiat Oncol Biol Phys. 2016;95:360–367.
    1. Zhang W., Zhang X., Yang P., Blanchard P., Garden A.S., Gunn B., et al. Intensity-modulated proton therapy and osteoradionecrosis in oropharyngeal cancer. Radiother Oncol. 2017;123:401–405.
    1. Blanchard P., Garden A.S., Gunn G.B., Rosenthal D.I., Morrison W.H., Hernandez M., et al. Intensity-modulated proton beam therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for patients with oropharynx cancer – a case matched analysis. Radiother Oncol. 2016;120:48–55.
    1. Mohamed A.S.R., Cardenas C.E., Garden A.S., Awan M.J., Rock C.D., Westergaard S.A., et al. Patterns-of-failure guided biological target volume definition for head and neck cancer patients: FDG-PET and dosimetric analysis of dose escalation candidate subregions. Radiother Oncol. 2017;124:248–255.
    1. De Felice F., Thomas C., Barrington S., Pathmanathan A., Lei M., Urbano T.G. Analysis of loco-regional failures in head and neck cancer after radical radiation therapy. Oral Oncol. 2015;51:1051–1055.
    1. Salama J.K., Seiwert T.Y., Vokes E.E. Chemoradiotherapy for locally advanced head and neck cancer. J Clin Oncol. 2007;25:4118–4126.
    1. Lefebvre J.-L., Andry G., Chevalier D., Luboinski B., Collette L., Traissac L., et al. Laryngeal preservation with induction chemotherapy for hypopharyngeal squamous cell carcinoma: 10-year results of EORTC trial 24891. Ann Oncol. 2012;23:2708–2714.
    1. Vignoud J., Peuvrel P., Bourdin S., Beauvillain C., Bergerot P., Deraucourt D., et al. Final results of a randomized trial comparing chemotherapy plus radiotherapy with chemotherapy plus surgery plus radiotherapy in locally advanced resectable hypopharyngeal carcinomas. Laryngoscope. 2004;107:648–653.
    1. Madani I., Duprez F., Boterberg T., Van de Wiele C., Bonte K., Deron P., et al. Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer q. Radiother Oncol. 2011;101:351–355.
    1. Bourhis J., Overgaard J., Audry H., Ang K.K., Saunders M., Bernier J., et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet. 2006;368:843–854.
    1. Horiot J.C., Le Fur R., N'Guyen T., Chenal C., Schraub S., Alfonsi S., et al. Hyperfractionation versus conventional fractionation in oropharyngeal carcinoma: final analysis of a randomized trial of the EORTC cooperative group of radiotherapy. Radiother Oncol. 1992;25:231–241.
    1. Fellman B.M., Yuan Y. Bayesian optimal interval design for phase I oncology clinical trials. Stata J. 2015;15:110–120.
    1. Olteanu L.A.M., Duprez F., De Neve W., Berwouts D., Vercauteren T., Bauters W., et al. Late mucosal ulcers in dose-escalated adaptive dose-painting treatments for head-and-neck cancer. Acta Oncol (Madr) 2018;57:262–268.
    1. Marzi S., Pinnarò P., D’Alessio D., Strigari L., Bruzzaniti V., Giordano C., et al. Anatomical and dose changes of gross tumour volume and parotid glands for head and neck cancer patients during intensity-modulated radiotherapy: effect on the probability of xerostomia incidence. Clin Oncol (R Coll Radiol) 2012;24:e54–e62.
    1. Cheung Y.K., Chappell R. Sequential designs for phase I clinical trials with late-onset toxicities. Biometrics. 2000;56:1177–1182.
    1. Madani I., Duprez F., Boterberg T., Van de Wiele C., Bonte K., Deron P., et al. Maximum tolerated dose in a phase i trial on adaptive dose painting by numbers for head and neck cancer. Radiother Oncol. 2011;101:351–355.
    1. Forastiere A.A., Goepfert H., Maor M., Pajak T.F., Weber R., Morrison W., et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med. 2003;349:2091–2098.
    1. Hitt R., López-Pousa A., Martínez-Trufero J., Escrig V., Carles J., Rizo A., et al. Phase III study comparing cisplatin plus fluorouracil to paclitaxel, cisplatin, and fluorouracil induction chemotherapy followed by chemoradiotherapy in locally advanced head and neck cancer. J Clin Oncol. 2005;23:8636–8645.
    1. Hitt R., Grau J.J., López-Pousa A., Berrocal A., García-Girón C., Irigoyen A., et al. A randomized phase III trial comparing induction chemotherapy followed by chemoradiotherapy versus chemoradiotherapy alone as treatment of unresectable head and neck cancer. Ann Oncol. 2014;25:216–225.
    1. Nguyen-Tan P.F., Zhang Q., Ang K.K., Weber R.S., Rosenthal D.I., Soulieres D., et al. Randomized phase III Trial to test accelerated versus standard fractionation in combination with concurrent cisplatin for head and neck carcinomas in the Radiation Therapy Oncology Group 0129 trial: long-term report of efficacy and toxicity. J Clin Oncol. 2014;32:3858–3867.
    1. Magrini S.M., Buglione M., Corvò R., Pirtoli L., Paiar F., Ponticelli P., et al. Cetuximab and radiotherapy versus cisplatin and radiotherapy for locally advanced head and neck cancer: a randomized phase II trial. J Clin Oncol. 2016;34:427–435.
    1. Ghi M.G., Paccagnella A., Ferrari D., Foa P., Alterio D., Codecà C., et al. Induction TPF followed by concomitant treatment versus concomitant treatment alone in locally advanced head and neck cancer. A phase II-III trial. Ann Oncol. 2017;28:2206–2212.
    1. Noronha V., Joshi A., Patil V.M., Agarwal J., Ghosh-Laskar S., Budrukkar A., et al. Once-a-week versus once-every-3-weeks cisplatin chemoradiation for locally advanced head and neck cancer: a phase III randomized noninferiority trial. J Clin Oncol. 2018;36:1064–1072.
    1. Tao Y., Auperin A., Sire C., Martin L., Khoury C., Maingon P., et al. Improved outcome by adding concurrent chemotherapy to cetuximab and radiotherapy for locally advanced head and neck carcinomas: results of the GORTEC 2007–01 phase III randomized trial. J Clin Oncol. 2018;36:3084–3090.
    1. Geoffrois L., Martin L., De Raucourt D., Sun X.S., Tao Y., Maingon P., et al. Induction chemotherapy followed by cetuximab radiotherapy is not superior to concurrent chemoradiotherapy for head and neck carcinomas: Results of the GORTEC 2007–02 Phase III Randomized Trial. J Clin Oncol. 2018;36:3077–3083.
    1. Gillison M.L., Trotti A.M., Harris J., Eisbruch A., Harari P.M., Adelstein D.J., et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet. 2019;393:40–50.
    1. Cohen E.E.W., Karrison T.G., Kocherginsky M., Mueller J., Egan R., Huang C.H., et al. Phase III randomized trial of induction chemotherapy in patients with N2 or N3 locally advanced head and neck cancer. J Clin Oncol. 2014;32:2735–2743.
    1. Lomax A.J. Charged particle therapy: the physics of interaction. Cancer J. 2009;15:285–291.
    1. Water T.A., Bijl H.P., Schilstra C., Pijls‐Johannesma M., Langendijk J.A. The potential benefit of radiotherapy with protons in head and neck cancer with respect to normal tissue sparing: a systematic review of literature. Oncologist. 2011;16:366–377.
    1. Shune S.E., Karnell L.H., Karnell M.P., Van Daele D.J., Funk G.F. Association between severity of dysphagia and survival in patients with head and neck cancer. Head Neck. 2012;34:776–784.
    1. Bradley J.D., Paulus R., Komaki R., Masters G., Blumenschein G., Schild S., et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial p. Lancet Oncol. 2015;16:187–199.
    1. Cramer J.D., Hicks K.E., Rademaker A.W., Patel U.A., Samant S. Validation of the eighth edition American Joint Committee on Cancer staging system for human papillomavirus-associated oropharyngeal cancer. Head Neck. 2018;40:457–466.
    1. Ang K.K., Harris J., Wheeler R., Weber R., Rosenthal D.I., Nguyen-Tân P.F., et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.
    1. Aerts H.J.W.L., Velazquez E.R., Leijenaar R.T.H., Parmar C., Grossmann P., Carvalho S., et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5
    1. Vallières M., Freeman C.R., Skamene S.R., El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60:5471–5496.
    1. Zhai T.-T., van Dijk L.V., Huang B.-T., Lin Z.-X., Ribeiro C.O., Brouwer C.L., et al. Improving the prediction of overall survival for head and neck cancer patients using image biomarkers in combination with clinical parameters. Radiother Oncol. 2017;124:256–262.
    1. Zhai T., Langendijk J., van Dijk L., Halmos G., Witjes M., Oosting S., et al. Prognostic value of CT-based image-biomarkers for treatment outcomes of head and neck cancer patients. Int J Radiat Oncol Biol Phys. 2018 Submitted.
    1. Kumar V., Gu Y., Basu S., Berglund A., Eschrich S.A., Schabath M.B., et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30:1234–1248.

Source: PubMed

3
Subskrybuj