Inhaled nitric oxide improves ventilatory efficiency and exercise capacity in patients with mild COPD: A randomized-control cross-over trial

Devin B Phillips, Andrew R Brotto, Bryan A Ross, Tracey L Bryan, Eric Y L Wong, Victoria L Meah, Desi P Fuhr, Sean van Diepen, Michael K Stickland, Canadian Respiratory Research Network, Devin B Phillips, Andrew R Brotto, Bryan A Ross, Tracey L Bryan, Eric Y L Wong, Victoria L Meah, Desi P Fuhr, Sean van Diepen, Michael K Stickland, Canadian Respiratory Research Network

Abstract

Key points: Patients with mild chronic obstructive pulmonary disease (COPD) have an elevated ventilatory equivalent to CO2 production ( V̇E / V̇CO2 ) during exercise, secondary to increased dead space ventilation. The reason for the increased dead space is unclear, although pulmonary microvascular dysfunction and the corresponding capillary hypoperfusion is a potential mechanism. Despite emerging evidence that mild COPD is associated with pulmonary microvascular dysfunction, limited research has focused on experimentally modulating the pulmonary microvasculature during exercise in mild COPD. The present study sought to examine the effect of inhaled nitric oxide (iNO), a selective pulmonary vasodilator, on V̇E / V̇CO2 , dyspnoea and exercise capacity in patients with mild COPD. Experimental iNO increased peak oxygen uptake in mild COPD, secondary to reduced V̇E / V̇CO2 and dyspnoea. This is the first study to demonstrate that experimental manipulation of the pulmonary circulation alone, can positively impact dyspnoea and exercise capacity in mild COPD.

Abstract: Patients with mild chronic obstructive pulmonary disease (COPD) have an exaggerated ventilatory response to exercise, contributing to dyspnoea and exercise intolerance. Previous research in mild COPD has demonstrated an elevated ventilatory equivalent to CO2 production ( V̇E / V̇CO2 ) during exercise, secondary to increased dead space ventilation. The reason for the increased dead space is unclear, although pulmonary microvascular dysfunction and the corresponding capillary hypoperfusion is a potential mechanism. The present study tested the hypothesis that inhaled nitric oxide (iNO), a selective pulmonary vasodilator, would lower V̇E / V̇CO2 and dyspnoea, and improve exercise capacity in patients with mild COPD. In this multigroup randomized-control cross-over study, 15 patients with mild COPD (FEV1 = 89 ± 11% predicted) and 15 healthy controls completed symptom-limited cardiopulmonary exercise tests while breathing normoxic gas or 40 ppm iNO. Compared with placebo, iNO significantly increased peak oxygen uptake (1.80 ± 0.14 vs. 1.53 ± 0.10 L·min-1 , P < 0.001) in COPD, whereas no effect was observed in controls. At an equivalent work rate of 60 W, iNO reduced V̇E / V̇CO2 by 3.8 ± 4.2 units (P = 0.002) and dyspnoea by 1.1 ± 1.2 Borg units (P < 0.001) in COPD, whereas no effect was observed in controls. Operating lung volumes and oxygen saturation were unaffected by iNO in both groups. iNO increased peak oxygen uptake in COPD, secondary to reduced V̇E / V̇CO2 and dyspnoea. These data suggest that mild COPD patients demonstrate pulmonary microvascular dysfunction that contributes to increased V̇E / V̇CO2 , dyspnoea and exercise intolerance. This is the first study to demonstrate that experimental manipulation of the pulmonary circulation alone, can positively impact dyspnoea and exercise capacity in mild COPD.

Keywords: COPD; dyspnoea; exercise capacity; pulmonary circulation; pulmonary gas exchange; ventilation.

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society.

References

    1. Anthonisen NR, Connett JE, Enright PL & Manfreda J (2002). Hospitalizations and mortality in the Lung Health Study. Am J Resp Crit Care Med 166, 333-339.
    1. Ashutosh K, Phadke K, Jackson JF & Steele D (2000). Use of nitric oxide inhalation in chronic obstructive pulmonary disease. Thorax 55, 109-113.
    1. Barbera JA, Roger N, Roca J, Rodrigues-Roisin R, Rovira I & Higenbottam TW (1996). Worsening of pulmonary gas exchange with nitric oxide inhalation in chronic obstructive pulmonary disease. Lancet 347, 436-440.
    1. Blanco I, Gimeno E, Munoz PA, Pizarro S, Gistau C, Rodriguez-Roisin R, Roca J & Barbera JA (2010). Hemodynamic and gas exchange effects of sildenafil in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Am J Resp Crit Care Med 181, 270-278.
    1. Blanco I, Santos S, Gea J, Guell R, Torres F, Gimeno-Santos E, Rodriguez DA, Vilaro J, Gomez B, Roca J & Barbera JA (2013). Sildenafil to improve respiratory rehabilitation outcomes in COPD: a controlled trial. Eur Respir J 42, 982-992.
    1. Borg GAV (1982). Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14, 377-381.
    1. Charloux A, Lonsdorfer-Wolf E, Richard R, Lampert E, Oswald-Mammosser M, Mettauer B, Geny B & Lonsdorfer J (2000). A new impedance cardiography device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur J Appl Physiol 82, 313-320.
    1. Elbehairy AF, Ciavaglia CE, Webb KA, Guenette JA, Jensen D, Mourad SM, Neder JA, O'Donnell DE & Canadian Respiratory Research Network (2015). Pulmonary gas exchange abnormalities in mild chronic obstructive pulmonary disease. implications for dyspnea and exercise intolerance. Am J Resp Crit Care Med 191, 1384-1394.
    1. Elbehairy AF, Webb KA, Laveneziana P, Domnik NJ, Neder JA, O'Donnell DE & Canadian Respiratory Research Network (2018). Acute bronchodilator therapy does not reduce wasted ventilation during exercise in COPD. Respir Physiol Neurobiol 252-253, 64-71.
    1. Faisal A, Alghamdi BJ, Ciavaglia CE, Elbehairy AF, Webb KA, Ora J, Neder JA & O'Donnell DE (2016). Common mechanisms of dyspnea in chronic interstitial and obstructive lung disorders. Am J Resp Crit Care Med 193, 299-309.
    1. Gibson QH & Roughton FJW (1957). The kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin. J Physiol 136, 507-526.
    1. Graham BL, Steenbruggen I, Miller MR, Barjaktarevic IZ, Cooper BG, Hall GL, Hallstrand TS, Kaminsky DA, McCarthy K, McCormack MC, Oropez CE, Rosenfeld M, Stanojevic S, Swanney MP & Thompson BR (2019). Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am J Resp Crit Care Med 200, e70-e88.
    1. Guenette JA, Chin RC, Cheng S, Dominelli PB, Raghavan N, Webb KA, Neder JA & O'Donnell DE (2014). Mechanisms of exercise intolerance in global initiative for chronic obstructive lung disease grade 1 COPD. Eur Respir J 44, 1177-1187.
    1. Guenette JA, Webb KA & O'Donnell DE (2012). Does dynamic hyperinflation contribute to dyspnoea during exercise in patients with COPD? Eur Respir J 40, 322-329.
    1. Gutierrez CA, Ghezzo RH, Abboud RT, Cosio MG, Dill JR, Martin RR, McCarthy DS, Morse JL & Zamel N (2004). Reference values of pulmonary function tests for Canadian Caucasians. Can Respir J 11, 414-424.
    1. Hajian B, De Backer J, Vos W, Van Holsbeke C, Ferreira F, Quinn DA, Hufkens A, Claes R & De Backer W (2016). Pulmonary vascular effects of pulsed inhaled nitric oxide in COPD patients with pulmonary hypertension. Int J Chron Obstruct Pulmon Dis 11, 1533-1541.
    1. Hasuda T, Satoh T, Shimouchi A, Sakamaki F, Kyotani S, Matsumota T, Yoichi G & Nakanishi N (2000). Improvement in exercise capacity with nitric oxide inhalation in patients with precapillary pulmonary hypertension. Circulation 101, 2066-2070.
    1. Hueper K, Vogel-Claussen J, Parikh MA, Austin JH, Bluemke DA, Carr J, Choi J, Goldstein TA, Gomes AS, Hoffman EA, Kawut SM, Lima J, Michos ED, Post WS, Po MJ, Prince MR, Liu K, Rabinowitz D, Skrok J, Smith BM, Watson K, Yin Y, Zambeli-Ljepovic AM & Barr RG (2015). Pulmonary microvascular blood flow in mild chronic obstructive pulmonary disease and emphysema. The MESA COPD Study. Am J Resp Crit Care Med 192, 570-580.
    1. Huiart L, Ernst P & Suissa S (2005). Cardiovascular morbidity and mortality in COPD. Chest 128, 2640-2646.
    1. Ichinose F, Roberts JD, Jr & Zapol WM (2004). Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 109, 3106-3111.
    1. Iyer KS, Newell JD, Jr Jin D, Fuld MK, Saha PK, Hansdottir S & Hoffman EA (2016). Quantitative dual-energy computed tomography supports a vascular etiology of smoking-induced Inflammatory lung disease. Am J Resp Crit Care Med 193, 652-661.
    1. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W & Voigt JU (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28, 1-39.e14 e14.
    1. Lederer DJ, Bartels MN, Schluger NW, Brogan F, Jellen P, Thomashow BM & Kawut SM (2012). Sildenafil for chronic obstructive pulmonary disease: a randomized crossover trial. COPD 9, 268-275.
    1. Louvaris Z, Spetsioti S, Andrianopoulos V, Chynkiamis N, Habazettl H, Wagner H, Zakynthinos S, Wagner PD & Vogiatzis I (2019). Cardiac output measurement during exercise in COPD: a comparison of dye dilution and impedance cardiography. Clin Respir J 13, 222-231.
    1. Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CP, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, Gustafsson P, Hankinson J, Jensen R, McKay R, Miller MR, Navajas D, Pedersen OF, Pellegrino R & Wanger J (2005). Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 26, 720-735.
    1. Matsumoto A, Momomura S-i, Hirata Y, Aoyagi T, Sugiura S & Omata M (1997). Inhaled nitric oxide and exercise capacity in congestive heart failure. The Lancet 349, 999-1000.
    1. Neder JA, Alharbi A, Berton DC, Alencar MC, Arbex FF, Hirai DM, Webb KA & O'Donnell DE (2016). Ventilatory inefficiency adds to lung function in predicting mortality in COPD. J COPD 13, 416-424.
    1. O'Donnell DE & Webb KA (2008). The major limitation to exercise performance in COPD is dynamic hyperinflation. J Appl Physiol 105, 753-755.
    1. O'Donnell DE, Bertley JC, Chau LK & Webb KA (1997). Qualitative aspects of exertional breathlessness in chronic airflow limitation: pathophysiologic mechanisms. Am J Resp Crit Care Med 155, 109-115.
    1. Ofir D, Laveneziana P, Webb KA, Lam YM & O'Donnell DE (2008). Mechanisms of dyspnea during cycle exercise in symptomatic patients with GOLD stage I chronic obstructive pulmonary disease. Am J Resp Crit Care Med 177, 622-629.
    1. Oga T, Nishimura K, Tsukino M, Sato S & Hajiro T (2003). Analysis of the factors related to mortality in chronic obstructive pulmonary disease: role of exercise capacity and health status. Am J Resp Crit Care Med 167, 544-549.
    1. Pepke-Zaba J, Higenbottam TW, Tuan Dinh-Xuan A, Stone D & Wallwork J (1991). Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. The Lancet 338, 1173-1174.
    1. Phillips DB, Collins SÉ, Bryan TL, Wong EYL, McMurtry MS, Bhutani M & Stickland MK (2019). The effect of carotid chemoreceptor inhibition on exercise tolerance in chronic obstructive pulmonary disease: a randomized-controlled crossover trial. Resp Med 160, 105815.
    1. Phillips DB, Domnik NJ, Elbehairy AF, Preston ME, Milne KM, James MD, Vincent SG, Ibrahim-Masthan M, Neder JA, O'Donnell DE & Canadian Respiratory Research Network (2021). Elevated exercise ventilation in mild COPD is not linked to enhanced central chemosensitivity. Respir Physiol Neurobiol 284, 103571.
    1. Puente-Maestu L, Palange P, Casaburi R, Laveneziana P, Maltais F, Neder JA, O'Donnell DE, Onorati P, Porszasz J, Rabinovich R, Rossiter HB, Singh S, Troosters T & Ward S (2016). Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. Eur Respir J 47, 429-460.
    1. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, Enright PL, Hankinson JL, Ip MS, Zheng J, Stocks J & Initiative ERSGLF (2012). Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J 40, 1324-1343.
    1. Ries AL (2005). Minimally clinically important difference for the UCSD shortness of breath questionnaire, Borg scale, and visual analog scale. COPD 2, 105-110.
    1. Rietema H, Holverda S, Bogaard HJ, Marcus JT, Smit HJ, Westerhof N, Postmus PE, Boonstra A & Vonk-Noordegraaf A (2008). Sildenafil treatment in COPD does not affect stroke volume or exercise capacity. Eur Respir J 31, 759-764.
    1. Rodriguez-Roisin R, Drakulovic M, Rodriguez DA, Roca J, Barbera JA & Wagner PD (2009). Ventilation-perfusion imbalance and chronic obstructive pulmonary disease staging severity. J Appl Physiol (1985) 106, 1902-1908.
    1. Roger N, Barbera JA, Roca J, Rovira I, Gomez FP & Rodriguez-Roisin R (1997). Nitric oxide inhalation during exercise in chronic obstructive pulmonary disease. Am J Resp Crit Care Med 156, 800-806.
    1. Ross BA, Brotto AR, Fuhr DP, Phillips DB, van Diepen S, Bryan TL & Stickland MK (2020). The supine position improves but does not normalize the blunted pulmonary capillary blood volume response to exercise in mild COPD. J Appl Physiol (1985) 128, 925-933.
    1. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK & Schiller NB (2010). Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23, 786-788.
    1. Schaeffer MR, Mendonca CT, Levangie MC, Andersen RE, Taivassalo T & Jensen D (2014). Physiological mechanisms of sex differences in exertional dyspnoea: role of neural respiratory motor drive. Exp Physiol 99, 427-441.
    1. Simon PM, Schwartzstein RM, Weiss JW, Fencl V, Teghtsoonian M & Weinberger SE (1990). Distinguishable types of dyspnea in patients with shortness of breath. Am Rev Respir Dis 142, 1009-1014.
    1. Sin DD & Man SF (2005). Chronic obstructive pulmonary disease as a risk factor for cardiovascular morbidity and mortality. Proc Am Thorac Soc 2, 8-11.
    1. Stanojevic S, Graham BL, Cooper BG, Thompson BR, Carter KW, Francis RW, Hall GL, Global Lung Function Initiative Twg & Global Lung Function Initiative T (2017). Official ERS technical standards: Global Lung Function Initiative reference values for the carbon monoxide transfer factor for Caucasians. Eur Respir J 50, 1700010.
    1. Steudel W, Hurford WE & Zapol WM (1999). Inhaled nitric oxide: basic biology and clinical application. Anesthesiology 91, 1090-1121.
    1. Tedjasaputra V, van Diepen S, Phillips DB, Wong EYL, Bhutani M, Michaelchuk WW, Bryan TL & Stickland MK (2018). Pulmonary capillary blood volume response to exercise is diminished in mild chronic obstructive pulmonary disease. Resp Med 145, 57-65.
    1. Vonbank K, Ziesche R, Higenbottam TW, Stiebellehner L, Petkow V, Schenk P, Germann P & Block LH (2003). Controlled prospective randomised trial on the effects on pulmonary haemodynamics of the ambulatory long term use of nitric oxide and oxygen in patients with severe COPD. Thorax 58, 289-293.
    1. Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, Casaburi R, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Hankinson J, Jensen R, Johnson D, Macintyre N, McKay R, Miller MR, Navajas D, Pellegrino R & Viegi G (2005). Standardisation of the measurement of lung volumes. Eur Respir J 26, 511-522.

Source: PubMed

3
Subskrybuj