Study Protocol on the Validation of the Quality of Sleep Data from Xiaomi Domestic Wristbands

Patricia Concheiro-Moscoso, Francisco José Martínez-Martínez, María Del Carmen Miranda-Duro, Thais Pousada, Laura Nieto-Riveiro, Betania Groba, Francisco Javier Mejuto-Muiño, Javier Pereira, Patricia Concheiro-Moscoso, Francisco José Martínez-Martínez, María Del Carmen Miranda-Duro, Thais Pousada, Laura Nieto-Riveiro, Betania Groba, Francisco Javier Mejuto-Muiño, Javier Pereira

Abstract

(1) Background: Sleep disorders are a common problem for public health since they are considered potential triggers and predictors of some mental and physical diseases. Evaluating the sleep quality of a person may be a first step to prevent further health issues that diminish their independence and quality of life. Polysomnography (PSG) is the "gold standard" for sleep studies, but this technique presents some drawbacks. Thus, this study intends to assess the capability of the new Xiaomi Mi Smart Band 5 to be used as a tool for sleep self-assessment. (2) Methods: This study will be an observational and prospective study set at the sleep unit of a hospital in A Coruña, Spain. Forty-three participants who meet the inclusion criteria will be asked to participate. Specific statistical methods will be used to analyze the data collected using the Xiaomi Mi Smart Band 5 and PSG. (3) Discussion: This study offers a promising approach to assess whether the Xiaomi Mi Smart Band 5 correctly records our sleep. Even though these devices are not expected to replace PSG, they may be used as an initial evaluation tool for users to manage their own sleep quality and, if necessary, consult a health professional. Further, the device may help users make simple changes to their habits to improve other health issues as well. Trial registration: NCT04568408 (Registered 23 September 2020).

Keywords: Xiaomi Mi Smart Band 5; daily life activities; health promotion; internet of things; occupation; participatory health; polysomnography; sleep; wearable technology.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
The recruitment and assessment process.

References

    1. Filip I., Tidman M., Saheba N., Bennett H., Wick B., Rouse N., Patriche D., Radfar A. Public health burden of sleep disorders: Underreported problem. J. Public Health. 2017;25:243–248. doi: 10.1007/s10389-016-0781-0.
    1. Tester N.J., Foss J.J. Sleep as an Occupational Need. Am. J. Occup. Ther. 2017;72:7201347010p1. doi: 10.5014/ajot.2018.020651.
    1. Matricciani L., Bin Y.S., Lallukka T., Kronholm E., Dumuid D., Paquet C., Olds T. Past, present, and future: Trends in sleep duration and implications for public health. Sleep Health. 2017;3:317–323. doi: 10.1016/j.sleh.2017.07.006.
    1. Zhou G., Liu S., Yu X., Zhao X., Ma L., Shan P. High prevalence of sleep disorders and behavioral and psychological symptoms of dementia in late-onset Alzheimer disease. Medicine. 2019;98:e18405. doi: 10.1097/MD.0000000000018405.
    1. Pavlova K.M., Latreille V. Sleep Disorders. Am. J. Med. 2019;132:292–299. doi: 10.1016/j.amjmed.2018.09.021.
    1. Chen J., Waite L., Kurina L.M., Thisted R.A., McClintock M., Lauderdale D.S. Insomnia Symptoms and Actigraph-Estimated Sleep Characteristics in a Nationally Representative Sample of Older Adults. J. Gerontol. Ser. A. 2015;70:185–192. doi: 10.1093/gerona/glu144.
    1. Acquavella J., Mehra R., Bron M., Suomi J.M.H., Hess G.P. Prevalence of narcolepsy and other sleep disorders and frequency of diagnostic tests from 2013–2016 in insured patients actively seeking care. J. Clin. Sleep Med. 2020;16:1255–1263. doi: 10.5664/jcsm.8482.
    1. Hale L., Troxel W., Buysse D.J. Sleep Health: An Opportunity for Public Health to Address Health Equity. Annu. Rev. Public Health. 2020;41:81–99. doi: 10.1146/annurev-publhealth-040119-094412.
    1. Lee M., Choh A.C., Demerath E.W., Knutson K.L., Duren D.L., Sherwood R.J., Sun S.S., Chumlea W.C., Towne B., Siervogel R.M., et al. Sleep disturbance in relation to health-related quality of life in adults: The fels longitudinal study. J. Nutr. Health Aging. 2009;13:576–583. doi: 10.1007/s12603-009-0110-1.
    1. Webb C.A., Cui R., Titus C., Fiske A., Nadorff M.R. Sleep disturbance, Activities of Daily Living, and Depressive Symptoms among Older Sdults. Clin. Gerontol. 2017;41:172–180. doi: 10.1080/07317115.2017.1408733.
    1. Zailinawati A.-H., Mazza D., Teng C.L. Prevalence of insomnia and its impact on daily function amongst Malaysian primary care patients. Asia Pac. Fam. Med. 2012;11:9. doi: 10.1186/1447-056X-11-9.
    1. Puri S., Herrick J.E., Collins J.P., Aldhahi M., Baattaiah B. Physical functioning and risk for sleep disorders in US adults: Results from the National Health and Nutrition Examination Survey 2005–2014. Public Health. 2017;152:123–128. doi: 10.1016/j.puhe.2017.07.030.
    1. Hallit S., Hajj A., Sacre H., Al Karaki G., Malaeb D., Kheir N., Salameh P., Hallit R. Impact of Sleep Disorders and Other Factors on the Quality of Life in General Population. J. Nerv. Ment. Dis. 2019;207:333–339. doi: 10.1097/NMD.0000000000000968.
    1. Abdulah D.M., Piro R.S. Sleep disorders as primary and secondary factors in relation with daily functioning in medical students. Ann. Saudi Med. 2018;38:57–64. doi: 10.5144/0256-4947.2018.57.
    1. Wade A. The societal costs of insomnia. Neuropsychiatr. Dis. Treat. 2010;7:1. doi: 10.2147/NDT.S15123.
    1. Botteman M. Health economics of insomnia therapy: Implications for policy. Sleep Med. 2009;10:S22–S25. doi: 10.1016/j.sleep.2009.07.001.
    1. Johnson D.A., Billings M.E., Hale L. Environmental Determinants of Insufficient Sleep and Sleep Disorders: Implications for Population Health. Curr. Epidemiol. Rep. 2018;5:61–69. doi: 10.1007/s40471-018-0139-y.
    1. Skaer T.L., Sclar D.A. Economic Implications of Sleep Disorders. Pharmacoeconomics. 2010;28:1015–1023. doi: 10.2165/11537390-000000000-00000.
    1. Markwald R.R., Bessman S.C., Reini S.A., Drummond S.P.A. Performance of a Portable Sleep Monitoring Device in Individuals with High Versus Low Sleep Efficiency. J. Clin. Sleep Med. 2016;12:95–103. doi: 10.5664/jcsm.5404.
    1. de Zambotti M., Baker F.C., Willoughby A.R., Godino J.G., Wing D., Patrick K., Colrain I.M. Measures of sleep and cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents. Physiol. Behav. 2016;158:143–149. doi: 10.1016/j.physbeh.2016.03.006.
    1. Kurina L.M., Thisted R.A., Chen J.H., McClintock M.K., Waite L.J., Lauderdale D.S. Actigraphic sleep characteristics among older Americans. Sleep Health. 2015;1:285–292. doi: 10.1016/j.sleh.2015.09.004.
    1. Chamorro N., Sellarés J., Millán G., Cano E., Soler N., Embid C., Montserrat J.M. An integrated model involving sleep units and primary care for the diagnosis of sleep apnoea. Eur. Respir. J. 2013;42:1151–1154. doi: 10.1183/09031936.00192812.
    1. Merilahti J., Korhonen I. Association between Continuous Wearable Activity Monitoring and Self-Reported Functioning in Assisted Living Facility and Nursing Home Residents. J. Frailty Aging. 2016;5:225–232. doi: 10.14283/jfa.2016.102.
    1. Shelgikar A.V., Anderson P.F., Stephens M.R. Sleep Tracking, Wearable Technology, and Opportunities for Research and Clinical Care. Chest. 2016;446:732–743. doi: 10.1016/j.chest.2016.04.016.
    1. Griessenberger H., Heib D.P.J., Kunz A.B., Hoedlmoser K., Schabus M. Assessment of a wireless headband for automatic sleep scoring. Sleep Breath. 2013;17:747–752. doi: 10.1007/s11325-012-0757-4.
    1. Smith M.T., McCrae C.S., Cheung J., Martin J.L., Harrod C.G., Heald J.L., Carden K.A. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: An American academy of sleep medicine clinical practice guideline. J. Clin. Sleep Med. 2018;14:1231–1237. doi: 10.5664/jcsm.7230.
    1. Withrow D., Roth T., Koshorek G., Roehrs T. Relation between ambulatory actigraphy and laboratory polysomnography in insomnia practice and research. J. Sleep Res. 2019;176:e12854. doi: 10.1111/jsr.12854.
    1. Faerman A., Kaplan K.A., Zeitzer J.M. Subjective sleep quality is poorly associated with actigraphy and heart rate measures in community-dwelling older men. Sleep Med. 2020;73:154–161. doi: 10.1016/j.sleep.2020.04.012.
    1. Williams J.M., Taylor D.J., Slavish D.C., Gardner C.E., Zimmerman M.R., Patel K., Reichenberger D.A., Francetich J.M., Dietch J.R., Estevez R. Validity of Actigraphy in Young Adults With Insomnia. Behav. Sleep Med. 2020;18:91–106. doi: 10.1080/15402002.2018.1545653.
    1. Roberts D.M., Schade M.M., Mathew G.M., Gartenberg D., Buxton O.M. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography. Sleep. 2020;43:1–15. doi: 10.1093/sleep/zsaa045.
    1. Xie J., Wen D., Liang L., Jia Y., Gao L., Lei J. Evaluating the validity of current mainstream wearable devices in fitness tracking under various physical activities: Comparative study. J. Med. Internet Res. 2018;20:e94. doi: 10.2196/mhealth.9754.
    1. Kubala A.G., Barone Gibbs B., Buysse D.J., Patel S.R., Hall M.H., Kline C.E. Field-based Measurement of Sleep: Agreement between Six Commercial Activity Monitors and a Validated Accelerometer. Behav. Sleep Med. 2020;18:637–652. doi: 10.1080/15402002.2019.1651316.
    1. Bravo P., Contreras A., Perestelo-Pérez L., Pérez-Ramos J., Málaga G. Looking for a more participative healthcare: Sharing medical decision making. Rev. Peru. Med. Exp. Salud Publica. 2013;30:691–697.
    1. Cook J.D., Prairie M.L., Plante D.T. Utility of the Fitbit Flex to evaluate sleep in major depressive disorder: A comparison against polysomnography and wrist-worn actigraphy. J. Affect. Disord. 2017;217:299–305. doi: 10.1016/j.jad.2017.04.030.
    1. Wan J., Gu X., Chen L., Wang J. Internet of things for ambientassisted living: Challenges and future opportunities; Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery(CyberC); Nanjing, China. 12–14 October 2017; pp. 354–357.
    1. Seo D., Yoo B., Ko H. In: Distributed, Ambient and Pervasive Interactions. Streitz N., Markopoulos P., editors. Volume 9749. Springer International Publishing; Cham, Switzerland: 2016. Lecture Notes in Computer Science.
    1. Banaee H., Ahmed M.U., Loutfi A. Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors. 2013;13:17472–17500. doi: 10.3390/s131217472.
    1. Singh J., Keer N. Overview of Telemedicine and Sleep Disorders. Sleep Med. Clin. 2020;15:341–346. doi: 10.1016/j.jsmc.2020.05.005.
    1. Apesteguía L., Pina L.J. Ultrasound-guided core-needle biopsy of breast lesions. Insights Imaging. 2011;2:493–500. doi: 10.1007/s13244-011-0090-7.
    1. Mičková E., Machová K., Daďová K., Svobodová I. Does Dog Ownership Affect Physical Activity, Sleep, and Self-Reported Health in Older Adults? Int. J. Environ. Res. Public Health. 2019;16:3355. doi: 10.3390/ijerph16183355.
    1. Nieto-Riveiro L., Groba B., Miranda M.C., Concheiro P., Pazos A., Pousada T., Pereira J. Technologies for participatory medicine and health promotion in the elderly population. Medicine. 2018;97:e10791. doi: 10.1097/MD.0000000000010791.
    1. Rundo J.V., Downey R. Handbook of Clinical Neurology. Volume 160. Elsevier; Amsterdam, The Netherlands: 2019. Polysomnography; pp. 381–392.
    1. Jayarathna T., Gargiulo G.D., Breen P.P. Continuous vital monitoring during sleep and light activity using carbon-black elastomer sensors. Sensors. 2020;20:1583. doi: 10.3390/s20061583.
    1. Noviyanto A., Isa S.M., Wasito I., Arymurthy A.M. Selecting Features of Single Lead ECG Signal for Automatic Sleep Stages Classification using Correlation-based Feature Subset Selection. Int. J. Comput. Sci. Issues. 2011;8:139–148.
    1. Lewicke A., Sazonov E., Corwin M.J., Neuman M., Schuckers S. Sleep Versus Wake Classification From Heart Rate Variability Using Computational Intelligence: Consideration of Rejection in Classification Models. IEEE Trans. Biomed. Eng. 2008;55:108–118. doi: 10.1109/TBME.2007.900558.
    1. Fonseca P., Long X., Radha M., Haakma R., Aarts R.M., Rolink J. Sleep stage classification with ECG and respiratory effort. Physiol. Meas. 2015;36:2027–2040. doi: 10.1088/0967-3334/36/10/2027.
    1. Šušmáková K., Krakovská A. Discrimination ability of individual measures used in sleep stages classification. Artif. Intell. Med. 2008;44:261–277. doi: 10.1016/j.artmed.2008.07.005.
    1. Gharbali A.A., Najdi S., Fonseca J.M. Investigating the contribution of distance-based features to automatic sleep stage classification. Comput. Biol. Med. 2018;96:8–23. doi: 10.1016/j.compbiomed.2018.03.001.
    1. de Zambotti M., Goldstone A., Claudatos S., Colrain I.M., Baker F.C. A validation study of Fitbit Charge 2TM compared with polysomnography in adults. Chronobiol. Int. 2018;35:465–476. doi: 10.1080/07420528.2017.1413578.
    1. Kahawage P., Jumabhoy R., Hamill K., Zambotti M., Drummond S.P.A. Validity, potential clinical utility, and comparison of consumer and research-grade activity trackers in Insomnia Disorder I: In-lab validation against polysomnography. J. Sleep Res. 2020;29 doi: 10.1111/jsr.12931.
    1. Ameen M.S., Cheung L.M., Hauser T., Hahn M.A., Schabus M. About the Accuracy and Problems of Consumer Devices in the Assessment of Sleep. Sensors. 2019;19:4160. doi: 10.3390/s19194160.
    1. El-Amrawy F., Nounou M.I. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial? Healthc. Inform. Res. 2015;21:315. doi: 10.4258/hir.2015.21.4.315.
    1. Puri A., Kim B., Nguyen O., Stolee P., Tung J., Lee J. User Acceptance of Wrist-Worn Activity Trackers Among Community-Dwelling Older Adults: Mixed Method Study. JMIR mHealth uHealth. 2017;5:e173. doi: 10.2196/mhealth.8211.
    1. Lai Y.-H., Huang F.-F. Advances in Intelligent Systems and Computing. Volume 661. Springer; Berlin, Germany: 2018. A Study on the Intention to Use the Wearable Device in Taiwan: A Case Study on Xiaomi Mi Band; pp. 283–292.
    1. Hulley S., Cummings S., Browner W., Grady D., Newman T. Diseño de Investigaciones Clínicas. 4th ed. Wolters Kluwer Health; Barcelona, Spain: 2014.
    1. Chan A., Tetzlaff J.M., Altman D.G., Laupacis A., Gøtzsche P.C., Krleža-Jerić K., Hróbjartsson A., Mann H., Dickersin K., Berlin J.A., et al. SPIRIT 2013 Statement: Defining Standard Protocol Items for Clinical Trials. Ann. Intern. Med. 2013;158:200. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. de Zambotti M., Rosas L., Colrain I.M., Baker F.C. The Sleep of the Ring: Comparison of the ŌURA Sleep Tracker against Polysomnography. Behav. Sleep Med. 2019;17:124–136. doi: 10.1080/15402002.2017.1300587.
    1. Buysse D.J., Reynolds C.F., Monk T.H., Berman S.R., Kupfer D.J. The Pittsburgh Sleep Quality Index (PSQI): A new instrument for psychiatric research and practice. Psychiatry Res. 1989;28:193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Jafari B., Mohsenin V. Polysomnography. Clin. Chest Med. 2010;31:287–297. doi: 10.1016/j.ccm.2010.02.005.
    1. Iber C., Ancoli-Israel S., Chesson A.L., Quan S.F. In: The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. American Academy of Sleep Medicine, editor. American Academy of Sleep Medicine; Westchester, NY, USA: 2007.
    1. Kemp B., Olivan J. European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data. Clin. Neurophysiol. 2003;114:1755–1761. doi: 10.1016/S1388-2457(03)00123-8.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Erlbaum Associates; Hillsdale, NJ, USA: 1998.
    1. Bunce C. Correlation, Agreement, and Bland–Altman Analysis: Statistical Analysis of Method Comparison Studies. Am. J. Ophthalmol. 2009;148:4–6. doi: 10.1016/j.ajo.2008.09.032.
    1. Martin Bland J., Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. Agencia Española de Protección de datos Reglamento General de Protección de Datos. [(accessed on 26 January 2021)]; Available online: .
    1. The European Parliament. The Council of the European Union . Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of such Data, and Repealing. European Parliament; Brussels, Belgium: 2016. pp. 45–62.
    1. Faulkner S., Mairs H. An exploration of the role of the occupational therapist in relation to sleep problems in mental health settings. Br. J. Occup. Ther. 2015;78:516–524. doi: 10.1177/0308022614564771.

Source: PubMed

3
Subskrybuj