The effect of moderate alcohol consumption on adiponectin oligomers and muscle oxidative capacity: a human intervention study

J W J Beulens, L J C van Loon, F J Kok, M Pelsers, T Bobbert, J Spranger, A Helander, H F J Hendriks, J W J Beulens, L J C van Loon, F J Kok, M Pelsers, T Bobbert, J Spranger, A Helander, H F J Hendriks

Abstract

Aims/hypothesis: The aim of this study was to investigate whether moderate alcohol consumption increases plasma high molecular weight (HMW) adiponectin and/or muscle oxidative capacity.

Materials and methods: Eleven lean (BMI 18-25 kg/m(2)) and eight overweight (BMI >or=27 kg/m(2)) men consumed 100 ml whisky ( approximately 32 g alcohol) or water daily for 4 weeks in a randomised, controlled, crossover trial. After each treatment period, muscle biopsies and fasting blood samples were collected.

Results: Adiponectin concentrations increased (p < 0.001) by 12.5% after 4 weeks of moderate alcohol consumption. Moderate alcohol consumption tended to increase HMW adiponectin by 57% (p = 0.07) and medium molecular weight adiponectin by 12.5% (p = 0.07), but not low molecular weight (LMW) adiponectin. Skeletal muscle citrate synthase, cytochrome c oxidase and beta-3-hydroxyacyl coenzyme A dehydrogenase (beta-HAD) activity were not changed after moderate alcohol consumption, but an interaction between alcohol consumption and BMI was observed for cytochrome c oxidase (p = 0.072) and citrate synthase (p = 0.102) activity. Among lean men, moderate alcohol consumption tended to increase cytochrome c oxidase (p = 0.08) and citrate synthase activity (p = 0.12) by 23 and 26%, respectively, but not among overweight men. In particular, plasma HMW adiponectin correlated positively with activities of skeletal muscle citrate synthase (r = 0.64, p = 0.009), cytochrome c oxidase (p = 0.59, p = 0.009) and beta-HAD (r = 0.46, p = 0.056), while such correlation was not present for LMW adiponectin. Whole-body insulin sensitivity and intramyocellular triacylglycerol content were not affected by moderate alcohol consumption.

Conclusions/interpretation: Moderate alcohol consumption increases adiponectin concentrations, and in particular HMW adiponectin. Concentrations of HMW adiponectin in particular were positively associated with skeletal muscle oxidative capacity.

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diacare.28.3.719', 'is_inner': False, 'url': 'https://doi.org/10.2337/diacare.28.3.719'}, {'type': 'PubMed', 'value': '15735217', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15735217/'}]}
    2. Koppes LL, Dekker JM, Hendriks HF, Bouter LM, Heine RJ (2005) Moderate alcohol consumption lowers the risk of type 2 diabetes: a meta-analysis of prospective observational studies. Diabetes Care 28:719–725
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diacare.27.1.184', 'is_inner': False, 'url': 'https://doi.org/10.2337/diacare.27.1.184'}, {'type': 'PubMed', 'value': '14693987', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14693987/'}]}
    2. Sierksma A, Patel H, Ouchi N et al (2004) Effect of moderate alcohol consumption on adiponectin, tumor necrosis factor-alpha, and insulin sensitivity. Diabetes Care 27:184–189
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/90984', 'is_inner': False, 'url': 'https://doi.org/10.1038/90984'}, {'type': 'PubMed', 'value': '11479627', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11479627/'}]}
    2. Yamauchi T, Kamon J, Waki H et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/dc05-1801', 'is_inner': False, 'url': 'https://doi.org/10.2337/dc05-1801'}, {'type': 'PubMed', 'value': '16732021', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16732021/'}]}
    2. Hara K, Horikoshi M, Yamauchi T et al (2006) Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care 29:1357–1362
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10539756', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10539756/'}]}
    2. Siler SQ, Neese RA, Hellerstein MK (1999) De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Am J Clin Nutr 70:928–936
    1. None
    2. Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic, New York
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11479724', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11479724/'}]}
    2. Koopman R, Schaart G, Hesselink MK (2001) Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochem Cell Biol 116:63–68
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1183/09031936.02.00762001', 'is_inner': False, 'url': 'https://doi.org/10.1183/09031936.02.00762001'}, {'type': 'PubMed', 'value': '11998989', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11998989/'}]}
    2. Gosker HR, van Mameren H, van Dijk PJ et al (2002) Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease. Eur Respir J 19:617–625
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diabetes.54.9.2712', 'is_inner': False, 'url': 'https://doi.org/10.2337/diabetes.54.9.2712'}, {'type': 'PubMed', 'value': '16123361', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16123361/'}]}
    2. Bobbert T, Rochlitz H, Wegewitz U et al (2005) Changes of adiponectin oligomer composition by moderate weight reduction. Diabetes 54:2712–2719
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1074/jbc.M311113200', 'is_inner': False, 'url': 'https://doi.org/10.1074/jbc.m311113200'}, {'type': 'PubMed', 'value': '14699128', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14699128/'}]}
    2. Pajvani UB, Hawkins M, Combs TP et al (2004) Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 279:12152–12162
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.cmet.2006.05.002', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.cmet.2006.05.002'}, {'type': 'PMC', 'value': 'PMC2671025', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2671025/'}, {'type': 'PubMed', 'value': '16814734', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16814734/'}]}
    2. Civitarese AE, Ukropcova B, Carling S et al (2006) Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab 4:75–87
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15166296', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15166296/'}]}
    2. He J, Goodpaster BH, Kelley DE (2004) Effects of weight loss and physical activity on muscle lipid content and droplet size. Obes Res 12:761–769
    1. None
    2. Stryer L (1988) Citric acid cycle. In: Stryer L (ed.) Biochemistry, 3rd edn. Freeman, New York, pp 373–396
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1054/mehy.2001.1524', 'is_inner': False, 'url': 'https://doi.org/10.1054/mehy.2001.1524'}, {'type': 'PubMed', 'value': '12056879', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12056879/'}]}
    2. Kokavec A, Crowe SF (2002) Alcohol consumption in the absence of adequate nutrition may lead to activation of the glyoxylate cycle in man. Med Hypotheses 58:411–415
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diacare.22.9.1462', 'is_inner': False, 'url': 'https://doi.org/10.2337/diacare.22.9.1462'}, {'type': 'PubMed', 'value': '10480510', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10480510/'}]}
    2. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470

Source: PubMed

3
Subskrybuj