Specific IgA and metalloproteinase activity in bronchial secretions from stable chronic obstructive pulmonary disease patients colonized by Haemophilus influenzae

Laura Millares, Alicia Marin, Judith Garcia-Aymerich, Jaume Sauleda, José Belda, Eduard Monsó, PAC-COPD Study Group, Josep M Antó, Judith Garcia-Aymerich, Marta Benet, Jordi de Batlle, Ignasi Serra, David Donaire-Gonzalez, Stefano Guerra, Joaquim Gea, Eva Balcells, Angel Gayete, Mauricio Orozco-Levi, Ivan Vollmer, Joan Albert Barberà, Federico P Gómez, Carles Paré, Josep Roca, Robert Rodriguez-Roisin, Xavier Freixa, Diego A Rodriguez, Elena Gimeno, Karina Portillo, Jaume Ferrer, Jordi Andreu, Esther Pallissa, Esther Rodríguez, Pere Casan, Rosa Güell, Ana Giménez, Eduard Monsó, Alicia Marín, Sara Barea, Josep Morera, Eva Farrero, Joan Escarrabill, Antoni Ferrer, Jaume Sauleda, Alvar G Agustí, Bernat Togores, Juan Bautista Gáldiz, Lorena López, José Belda, Laura Millares, Alicia Marin, Judith Garcia-Aymerich, Jaume Sauleda, José Belda, Eduard Monsó, PAC-COPD Study Group, Josep M Antó, Judith Garcia-Aymerich, Marta Benet, Jordi de Batlle, Ignasi Serra, David Donaire-Gonzalez, Stefano Guerra, Joaquim Gea, Eva Balcells, Angel Gayete, Mauricio Orozco-Levi, Ivan Vollmer, Joan Albert Barberà, Federico P Gómez, Carles Paré, Josep Roca, Robert Rodriguez-Roisin, Xavier Freixa, Diego A Rodriguez, Elena Gimeno, Karina Portillo, Jaume Ferrer, Jordi Andreu, Esther Pallissa, Esther Rodríguez, Pere Casan, Rosa Güell, Ana Giménez, Eduard Monsó, Alicia Marín, Sara Barea, Josep Morera, Eva Farrero, Joan Escarrabill, Antoni Ferrer, Jaume Sauleda, Alvar G Agustí, Bernat Togores, Juan Bautista Gáldiz, Lorena López, José Belda

Abstract

Background: Haemophilus influenzae is the most common colonizing bacteria of the bronchial tree in chronic obstructive pulmonary disease (COPD), and positive cultures for this potentially pathogenic microorganism (PPM) has been associated with local inflammation changes that may influence the relationships between H. influenzae and the bronchial mucosa.

Methods: A cross-sectional analysis of stable COPD patients enrolled in the Phenotype and Course of Chronic Obstructive Pulmonary Disease (PAC-COPD) Study, focusing on bronchial colonization by H. influenzae, was performed. Specific IgA against the PPM was measured by optical density, and metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) using ELISA in sputum samples. Levels in patients colonized by H. influenzae and non-colonized patients were compared.

Results: Sputum supernatant for the measurement of specific IgA against H. influenzae was available from 54 stable COPD patients, who showed levels of specific IgA significantly lower in colonized (n=21) than in non-colonized patients (n=33) (15 [4-37] versus 31 [10-75], p=0.033, Mann-Whitney U test). Proenzyme MMP-9 was measured in 44 patients, and it was higher in colonized (n=12, 1903 [1488-6699] ng/ml) than in non-colonized patients (n=32, 639 [373-972] ng/ml) (p<0.001, Mann-Whitney U test). Active form of MMP-9 was also higher in colonized (126 [25-277] ng/ml) than in non-colonized patients (39 [14-68] ng/ml) (p=0.021, Mann-Whitney U test), and the molar ratio between proenzyme MMP-9 and TIMP-1 was above 1 (2.1 [0.1-12.5]) in colonized patients, significantly higher than the ratio found in non-colonized patients (0.2 [0.08-0.5]) (p=0.030, Mann-Whitney U test).

Conclusions: Clinically stable COPD patients colonized by H. influenzae had lower levels of specific IgA against the microorganism and higher values of the active form of MMP-9 in their sputum supernatant than non-colonized patients. Bronchial colonization by H. influenzae may cause structural changes in the extracellular matrix through a defective defense and the production of active metalloproteinases.

Figures

Figure 1
Figure 1
Ten distinct isolates of H. Influenzae, isolated from COPD patients, used as capture antigen in ELISA testing.
Figure 2
Figure 2
Flow chart showing the number of subjects used in each analysis.
Figure 3
Figure 3
Level of specific IgA against H. influenzae in patients colonized by this bacteria (n=21) and non-colonized patients (n=33). Results expressed as optical density (OD) ratio between patients and healthy controls.
Figure 4
Figure 4
Proenzyme MMP-9 concentration in the sputum supernatant of patients colonized by H. influenzae (n=12) and non-colonized patients (n=32).
Figure 5
Figure 5
TIMP-1 concentration in the sputum supernatant of patients colonized by H. influenzae (n=12) and non-colonized patients (n=32).
Figure 6
Figure 6
Active MMP-9 concentration in the sputum supernatant of patients colonized by H. influenzae (n=12) and non- colonized patients (n=32).
Figure 7
Figure 7
Molar ratio between proenzyme MMP-9 and TIMP-1 in colonized patients colonized by H. influenzae (n=12) and non-colonized patients (n=32).

References

    1. Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008;359(22):2355–2365. doi: 10.1056/NEJMra0800353.
    1. Berenson CS, Murphy TF, Wrona CT, Sethi S. Outer membrane protein P6 of nontypeable Haemophilus influenzae is a potent and selective inducer of human macrophage proinflammatory cytokines. Infect Immun. 2005;73(5):2728–2735. doi: 10.1128/IAI.73.5.2728-2735.2005.
    1. Doring G, Parameswaran IG, Murphy TF. Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease. FEMS Microbiol Rev. pp. 124–146.
    1. Srikhanta YN, Fox KL, Jennings MP. The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat Rev Microbiol. 2010;8(3):196–206. doi: 10.1038/nrmicro2283.
    1. Starner TD, Zhang N, Kim G, Apicella MA, McCray PB Jr. Haemophilus influenzae forms biofilms on airway epithelia: implications in cystic fibrosis. Am J Respir Crit Care Med. 2006;174(2):213–220. doi: 10.1164/rccm.200509-1459OC.
    1. Gilsdorf JR, Marrs CF, Foxman B. Haemophilus influenzae: genetic variability and natural selection to identify virulence factors. Infect Immun. 2004;72(5):2457–2461. doi: 10.1128/IAI.72.5.2457-2461.2004.
    1. Schweda EK, Richards JC, Hood DW, Moxon ER. Expression and structural diversity of the lipopolysaccharide of Haemophilus influenzae: implication in virulence. Int J Med Microbiol. 2007;297(5):297–306. doi: 10.1016/j.ijmm.2007.03.007.
    1. King PT, Hutchinson PE, Johnson PD, Holmes PW, Freezer NJ, Holdsworth SR. Adaptive immunity to nontypeable Haemophilus influenzae. Am J Respir Crit Care Med. 2003;167(4):587–592. doi: 10.1164/rccm.200207-728OC.
    1. Russell MW KM, Lamm ME, In: Mucosal Immunology. Ogra JM PL, Lamm ME, Warren S, John B, McGhee JR, editor. 1999. Biological Activities of IgA; pp. 225–240.
    1. Kett K, Brandtzaeg P, Radl J, Haaijman JJ. Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues. J Immunol. 1986;136(10):3631–3635.
    1. Pilette C, Durham SR, Vaerman JP, Sibille Y. Mucosal immunity in asthma and chronic obstructive pulmonary disease: a role for immunoglobulin A? Proc Am Thorac Soc. 2004;1(2):125–135. doi: 10.1513/pats.2306032.
    1. Kraehenbuhl JP, Neutra MR. Molecular and cellular basis of immune protection of mucosal surfaces. Physiol Rev. 1992;72(4):853–879.
    1. Kilian M, Mestecky J, Schrohenloher RE. Pathogenic species of the genus Haemophilus and Streptococcus pneumoniae produce immunoglobulin A1 protease. Infect Immun. 1979;26(1):143–149.
    1. Mansa B, Kilian M. Retained antigen-binding activity of Fab alpha fragments of human monoclonal immunoglobulin A1 (IgA1) cleaved by IgA1 protease. Infect Immun. 1986;52(1):171–174.
    1. Mulks MH, Shoberg RJ. Bacterial immunoglobulin A1 proteases. Methods Enzymol. 1994;235:543–554.
    1. Marin A, Monso E, Garcia-Nunez M, Sauleda J, Noguera A, Pons J, Agusti A, Morera J. Variability and effects of bronchial colonisation in patients with moderate COPD. Eur Respir J. 2010;35(2):295–302. doi: 10.1183/09031936.00126808.
    1. Vernooy JH, Lindeman JH, Jacobs JA, Hanemaaijer R, Wouters EF. Increased activity of matrix metalloproteinase-8 and matrix metalloproteinase-9 in induced sputum from patients with COPD. Chest. 2004;126(6):1802–1810. doi: 10.1378/chest.126.6.1802.
    1. Russell RE, Culpitt SV, DeMatos C, Donnelly L, Smith M, Wiggins J, Barnes PJ. Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2002;26(5):602–609.
    1. Asano K, Shikama Y, Shoji N, Hirano K, Suzaki H, Nakajima H. Tiotropium bromide inhibits TGF-beta-induced MMP production from lung fibroblasts by interfering with Smad and MAPK pathways in vitro. Int J Chron Obstruct Pulmon Dis. 2010;5:277–286.
    1. Boschetto P, Quintavalle S, Zeni E, Leprotti S, Potena A, Ballerin L, Papi A, Palladini G, Luisetti M, Annovazzi L. et al.Association between markers of emphysema and more severe chronic obstructive pulmonary disease. Thorax. 2006;61(12):1037–1042. doi: 10.1136/thx.2006.058321.
    1. Elkington PT, Friedland JS. Matrix metalloproteinases in destructive pulmonary pathology. Thorax. 2006;61(3):259–266. doi: 10.1136/thx.2005.051979.
    1. Ohnishi K, Takagi M, Kurokawa Y, Satomi S, Konttinen YT. Matrix metalloproteinase-mediated extracellular matrix protein degradation in human pulmonary emphysema. Lab Invest. 1998;78(9):1077–1087.
    1. Culpitt SV, Rogers DF, Traves SL, Barnes PJ, Donnelly LE. Sputum matrix metalloproteases: comparison between chronic obstructive pulmonary disease and asthma. Respir Med. 2005;99(6):703–710. doi: 10.1016/j.rmed.2004.10.022.
    1. Balcells E, Anto JM, Gea J, Gomez FP, Rodriguez E, Marin A, Ferrer A, de Batlle J, Farrero E, Benet M. et al.Characteristics of patients admitted for the first time for COPD exacerbation. Respir Med. 2009;103(9):1293–1302. doi: 10.1016/j.rmed.2009.04.001.
    1. Garcia-Aymerich J, Gomez FP, Benet M, Farrero E, Basagana X, Gayete A, Pare C, Freixa X, Ferrer J, Ferrer A. et al.Identification and prospective validation of clinically relevant chronic obstructive pulmonary disease (COPD) subtypes. Thorax. 2010;66(5):430–437.
    1. Marin A, Garcia-Aymerich J, Sauleda J, Belda J, Millares L, Garcia-Nunez M, Serra I, Benet M, Agusti A, Anto JM. et al.Effect of Bronchial Colonisation on Airway and Systemic Inflammation in Stable COPD. COPD. 2012;9(2):121–130. doi: 10.3109/15412555.2011.636407.
    1. Garcia-Aymerich J, Gomez FP, Anto JM. [Phenotypic characterization and course of chronic obstructive pulmonary disease in the PAC-COPD Study: design and methods] Arch Bronconeumol. 2009;45(1):4–11.
    1. Pin I, Gibson PG, Kolendowicz R, Girgis-Gabardo A, Denburg JA, Hargreave FE, Dolovich J. Use of induced sputum cell counts to investigate airway inflammation in asthma. Thorax. 1992;47(1):25–29. doi: 10.1136/thx.47.1.25.
    1. Pizzichini E, Pizzichini MM, Efthimiadis A, Evans S, Morris MM, Squillace D, Gleich GJ, Dolovich J, Hargreave FE. Indices of airway inflammation in induced sputum: reproducibility and validity of cell and fluid-phase measurements. Am J Respir Crit Care Med. 1996;154(2 Pt 1):308–317.
    1. Sutherland ER, Pak J, Langmack EL, Silkoff PE, Martin RJ. Safety of sputum induction in moderate-to-severe chronic obstructive pulmonary disease. Respir Med. 2002;96(7):482–486. doi: 10.1053/rmed.2002.1342.
    1. Aaron SD, Angel JB, Lunau M, Wright K, Fex C, Le Saux N, Dales RE. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(2):349–355.
    1. Efthimiadis A, Jayaram L, Weston S, Carruthers S, Hargreave FE. Induced sputum: time from expectoration to processing. Eur Respir J. 2002;19(4):706–708. doi: 10.1183/09031936.02.00104002.
    1. Fujimoto K, Kubo K, Yamamoto H, Yamaguchi S, Matsuzawa Y. Eosinophilic inflammation in the airway is related to glucocorticoid reversibility in patients with pulmonary emphysema. Chest. 1999;115(3):697–702. doi: 10.1378/chest.115.3.697.
    1. Balows A. Manual of Clinical Microbiology, 5th edn: Washington DC. Microbiology: American Society of; 1991.
    1. Bakri F, Brauer AL, Sethi S, Murphy TF. Systemic and mucosal antibody response to Moraxella catarrhalis after exacerbations of chronic obstructive pulmonary disease. J Infect Dis. 2002;185(5):632–640. doi: 10.1086/339174.
    1. Gueders MM, Foidart JM, Noel A, Cataldo DD. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases. Eur J Pharmacol. 2006;533(1–3):133–144.
    1. Beeh KM, Beier J, Kornmann O, Buhl R. Sputum matrix metalloproteinase-9, tissue inhibitor of metalloprotinease-1, and their molar ratio in patients with chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and healthy subjects. Respir Med. 2003;97(6):634–639. doi: 10.1053/rmed.2003.1493.
    1. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO. et al.The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–2653. doi: 10.1056/NEJMoa032158.
    1. Kilian M, Mestecky J, Russell MW. Defense mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by bacterial immunoglobulin A proteases. Microbiol Rev. 1988;52(2):296–303.
    1. Plaut AG. The IgA1 proteases of pathogenic bacteria. Annu Rev Microbiol. 1983;37:603–622. doi: 10.1146/annurev.mi.37.100183.003131.
    1. Fernaays MM, Lesse AJ, Cai X, Murphy TF. Characterization of igaB, a second immunoglobulin A1 protease gene in nontypeable Haemophilus influenzae. Infect Immun. 2006;74(10):5860–5870. doi: 10.1128/IAI.00796-06.
    1. Fernaays MM, Lesse AJ, Sethi S, Cai X, Murphy TF. Differential genome contents of nontypeable Haemophilus influenzae strains from adults with chronic obstructive pulmonary disease. Infect Immun. 2006;74(6):3366–3374. doi: 10.1128/IAI.01904-05.
    1. Murphy TF, Lesse AJ, Kirkham C, Zhong H, Sethi S, Munson RS Jr. A clonal group of nontypeable Haemophilus influenzae with two IgA proteases is adapted to infection in chronic obstructive pulmonary disease. PLoS One. 2011;6(10):25923. doi: 10.1371/journal.pone.0025923.
    1. Polosukhin VV, Cates JM, Lawson WE, Zaynagetdinov R, Milstone AP, Massion PP, Ocak S, Ware LB, Lee JW, Bowler RP. et al.Bronchial secretory immunoglobulin a deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;184(3):317–327. doi: 10.1164/rccm.201010-1629OC.
    1. Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med. 1996;153(2):530–534.
    1. Sethi S, Maloney J, Grove L, Wrona C, Berenson CS. Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173(9):991–998. doi: 10.1164/rccm.200509-1525OC.
    1. Soler N, Ewig S, Torres A, Filella X, Gonzalez J, Zaubet A. Airway inflammation and bronchial microbial patterns in patients with stable chronic obstructive pulmonary disease. Eur Respir J. 1999;14(5):1015–1022. doi: 10.1183/09031936.99.14510159.
    1. Pesci A, Balbi B, Majori M, Cacciani G, Bertacco S, Alciato P, Donner CF. Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease. Eur Respir J. 1998;12(2):380–386. doi: 10.1183/09031936.98.12020380.
    1. Ilumets H, Rytila P, Demedts I, Brusselle GG, Sovijarvi A, Myllarniemi M, Sorsa T, Kinnula VL. Matrix metalloproteinases -8, -9 and -12 in smokers and patients with stage 0 COPD. Int J Chron Obstruct Pulmon Dis. 2007;2(3):369–379.
    1. Louhelainen N, Stark H, Mazur W, Rytila P, Djukanovic R, Kinnula VL. Elevation of sputum matrix metalloproteinase-9 persists up to 6 months after smoking cessation: a research study. BMC Pulm Med. 2010;10:13. doi: 10.1186/1471-2466-10-13.
    1. Lowrey GE, Henderson N, Blakey JD, Corne JM, Johnson SR. MMP-9 protein level does not reflect overall MMP activity in the airways of patients with COPD. Respir Med. 2008;102(6):845–851. doi: 10.1016/j.rmed.2008.01.006.
    1. Baines KJ, Simpson JL, Gibson PG. Innate immune responses are increased in chronic obstructive pulmonary disease. PLoS One. 2011;6(3):18426. doi: 10.1371/journal.pone.0018426.
    1. van Diemen CC, Postma DS, Siedlinski M, Blokstra A, Smit HA, Boezen HM. Genetic variation in TIMP1 but not MMPs predict excess FEV1 decline in two general population-based cohorts. Respir Res. 2011;12:57. doi: 10.1186/1465-9921-12-57.

Source: PubMed

3
Subskrybuj