Serum microRNA-21 as a potential biomarker for response to hypomethylating agents in myelodysplastic syndromes

Yundeok Kim, June-Won Cheong, Yeo-Kyeoung Kim, Ju-In Eom, Hoi-Kyung Jeung, Soo Jeong Kim, Dohyu Hwang, Jin Seok Kim, Hyeuong Joon Kim, Yoo Hong Min, Yundeok Kim, June-Won Cheong, Yeo-Kyeoung Kim, Ju-In Eom, Hoi-Kyung Jeung, Soo Jeong Kim, Dohyu Hwang, Jin Seok Kim, Hyeuong Joon Kim, Yoo Hong Min

Abstract

Identification of biomarkers that predict responses to hypomethylating agents (HMAs) will allow optimal strategies for epigenetic therapy in myelodysplastic syndromes (MDS) to be established. Serum miR-21 was quantitatively measured in 58 MDS patients treated with HMAs and 14 healthy controls. Serum miR-192 was an internal control, and diagnostic performance was evaluated according to receiver operating characteristics (ROCs). ROC analysis indicated that serum miR-21 levels differentiated responders from non-responders with an area under the curve of 0.648 (95% confidence, 0.49 to 0.72). The baseline level of serum miR-21 was significantly lower in the responder group than in the non-responder group (P = 0.041). The overall response rate (ORR) of the high miR-21 group was significantly lower than that of the low miR-21 group (41.2 vs. 73.2%, P = 0.021). Progression-free survival (PFS) was significantly inferior in the high group versus the low group (14.0 vs. 44.5 months, P = 0.001). Multivariate analyses revealed that the initial serum miR-21 level (P = 0.001) and circulating blasts (P = 0.007) were prognostic factors for PFS. Serum miR-21 level was significantly associated with ORR and PFS in MDS patients treated with HMAs. Although validation with a large prospective study is required, serum miR-21 is a potential biomarker of epigenetic therapy in MDS patients.

Conflict of interest statement

Competing Interests: The authors report that no competing interests exist.

Figures

Figure 1. Expression and stability of reference…
Figure 1. Expression and stability of reference gene candidates in the sera of healthy donors and patients with MDS.
(A) Quantification (Ct) of candidate reference miRNAs (miR-192, miR-16, and miR-93) in serum samples of healthy donors and MDS patients corrected for efficiency and two interpolate controls are shown. Box plots represent lower and upper quartiles with the median depicted with a horizontal line. Whiskers depict the 10th and 90th percentiles. Differences in serum levels of candidate miRNAs were not found between healthy donors (white box), MDS patients prior to HMA therapy (gray box), and MDS patients treated with four courses of HMA therapy (black box). (B) Average expression stability values for candidate reference miRs in MDS patients, which were calculated by the geNorm algorithm, are shown as a bar graph and with actual values. High expression stability is indicated by a low stability value. MDS, myelodysplastic syndromes; miRNAs, microRNAs; HMA, hypomethylating agents.
Figure 2. Differences in baseline serum miR-21…
Figure 2. Differences in baseline serum miR-21 expression levels.
(A) Difference in serum miR-21 levels between healthy donors and patients with MDS prior to HMA therapy. Expression levels of serum miR-21 were normalized to the reference gene, miR-192, which was selected as described in Design and Methods. (B) Difference in baseline serum miR-21 levels between responders to HMA therapy and non-responders. Bar graph and whisker indicate the median value and standard deviation of serum miR-21 levels, respectively. Significance is indicated by the P value.
Figure 3. Receiver operating characteristics (ROCs) curve…
Figure 3. Receiver operating characteristics (ROCs) curve analysis for the diagnostic value of miR-21.
The area under the ROC curve (AUC) was 0.648 (95% CI: 0.49 to 0.72).
Figure 4. Kaplan-Meier curves for overall survival…
Figure 4. Kaplan-Meier curves for overall survival and progression-free survival comparisons.
(A) Overall survival and (B) progression-free survival according to baseline serum miR-21 levels in patients with myelodysplastic syndromes treated with hypomethylating agents.

References

    1. Cazzole M, Malcovati L (2005) Myelodysplastic syndromes: Coping with ineffective hematopoiesis. N Engl J Med. 352: 536–538.
    1. Schiffer CA (2006) Clinical issues in the management of patients with myelodysplasia. Hematology Am Soc Hematol Educ Program. 205–10.
    1. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, et al. (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 20: 2429–40.
    1. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, et al. (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 106: 1794–803.
    1. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, et al. (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 10: 223–32.
    1. Seymour JF, Fenaux P, Silverman LR, Muffti GJ, Hellstrom-Lindberg E, et al. (2010) Effects of azacitidine compared with conventional care regimens in elderly (≥75 years) patients with higher-risk myelodysplastic syndromes. Crit Rev Oncol Hematol. 76: 218–27.
    1. Ravandi F, Issa JP, Garcia-Manero G, O’Brien S, Pierce S, et al. (2009) Superior outcome with hypomethylating therapy in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome and chromosome 5 and 7 abnormalities. Cancer. 115: 5746–51.
    1. Itzykson R, Thépot S, Quesnel B, Dreyfus F, Beyne-Rauzy O, et al. (2011) Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine. Blood. 117: 403–11.
    1. Wijermans P, Lübbert M, Verhoef G, Bosly A, Ravoet C, et al. (2000) Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol. 18: 956–62.
    1. Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, et al. (2011) Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia. 25: 1147–52.
    1. Walter MJ, Ding L, Shen D, Shao J, Grillot M, et al. (2011) Recurrent DNMT3A mutations in patients with myelodysplastic syndrome. Leukemia. 25: 1153–8.
    1. Link PA, Baer MR, James SR, Jones DA, Karpf AR (2008) p53-inducible ribonucleotide reductase (p53R2/RRM2B) is a DNA hypomethylation-independent decitabine gene target that correlates with clinical response in myelodysplastic syndrome/acute myelogenous leukemia. Cancer Res. 68: 9358–66.
    1. Follo MY, Finelli C, Mongiorgi S, Clissa C, Bosi C, et al. (2008) Reduction of phosphoinositide-phospholipase C beta1 methylation predicts the responsiveness to azacitidine in high-risk MDS. Proc Natl Acad Sci U S A. 106: 16811–6.
    1. Shen L, Kantarjian H, Guo Y, Lin E, Shan J, et al. (2010) DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol. 28: 605–13.
    1. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 9: 102–14.
    1. Liu J (2008) Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol. 20: 214–21.
    1. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M (2012) microRNAs in cancer management. Lancet Oncol. 13: e249–58.
    1. Corcoran C, Friel AM, Duffy MJ, Crown J, O’Driscoll L (2011) Intracellular and Extracellular MicroRNAs in breast cancer. Clinical Chemistry. 57: 18–32.
    1. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol. 23: 175–205.
    1. Erdogan B, Facey C, Qualtieri J, Tedesco J, Rinker E, et al. (2011) Diagnostic microRNAs in myelodysplastic syndrome. Exp Hematol. 39: 915–926.
    1. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, et al. (2002) Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U S A. 99: 15524–29.
    1. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, et al. (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. U S A. 101: 11755–60.
    1. Das S, Bryan K, Buckley PG, Piskareva O, Bray IM, et al... (2012) Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene. 2012 Jul 16. doi: 10.1038/onc.2012.311.
    1. Wei J, Gao W, Zhu CJ, Liu YQ, Mei Z, et al. (2011) Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin J Cancer. 30: 407–14.
    1. Ren Y, Zhou X, Mei M, Yuan XB, Han L, et al. (2010) MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer. 2010 Jan 31 10: 27 doi:
    1. Tao J, Lu Q, Wu D, Li P, Xu B, et al. (2011) microRNA-21 modulates cell proliferation and sensitivity to doxorubicin in bladder cancer cells. Oncol Rep. 25: 1721–9.
    1. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, et al. (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14: 2348–60.
    1. Hwang JH, Voortman J, Giovannetti E, Steinberg SM, Leon LG, et al. (2005) Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One. 5(5): e10630.
    1. Tomimaru Y, Eguchi H, Nagano H, Wada H, Kobayashi S, et al. (2012) Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J Hepatol. 56: 167–75.
    1. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 105: 10513–18.
    1. Chen X, Ba Y, Ma L, Cai X, Yin Y, et al. (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18: 997–1006.
    1. Song J, Bai Z, Han W, Zhang J, Meng H, et al. (2012) Identification of Suitable Reference Genes for qPCR analysis of serum microRNA in gastric cancer patients. Dig Dis Sci. 57: 897–904.
    1. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, et al. (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 27: 2128–36.
    1. Bourguignon LY, Spevak CC, Wong G, Xia W, Gilad E (2009) Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the Production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem. 284: 26533–46.
    1. Selaru FM, Olaru AV, Kan T, David S, Cheng Y, et al. (2009) MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology. 49: 1595–601.
    1. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, et al. (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 141: 672–5.
    1. Cheson BD, Greenberg PL, Bennett JM, Lowenberg B, Wijermans PW, et al. (2006) Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood. 108: 419–25.
    1. Zuo Z, Calin GA, de Paula HM, Medeiros LJ, Fernandez MH, et al. (2011) Circulating microRNAs let-7a and miR-16 predict progression-free survival and overall survival in patients with myelodysplastic syndrome. Blood. 118: 413–5.
    1. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002 Jun 18 3(7): RESEARCH0034.
    1. Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O’Brien S, et al. (2007) Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 109: 52–7.
    1. Kim DY, Lee JH, Lee JH, Lee KH, Kim YK, et al. (2010) Comparison of various criteria in predicting treatment response and prognosis of patients with myelodysplastic syndrome treated with azacitidine. Ann Hematol. 89: 15–23.
    1. van der Helm LH, Alhan C, Wijermans PW, van Marwijk Kooy M, Schaafsma R, et al. (2011) Platelet doubling after the first azacitidine cycle is a promising predictor for response in myelodysplastic syndromes (MDS), chronic myelomonocytic leukaemia (CMML) and acute myeloid leukaemia (AML) patients in the Dutch azacitidine compassionate named patient programme. Br J Haematol. 155: 599–606.
    1. Rüter B, Wijermans P, Claus R, Kunzmann R, Lübbert M (2007) Preferential cytogenetic response to continuous intravenous low-dose decitabine (DAC) administration in myelodysplastic syndrome with monosomy 7. Blood. 110: 1080–2.
    1. Cameron EE, Bachman KE, Myöhänen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 21: 103–7.
    1. Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, et al. (2004) Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood. 103: 1635–40.
    1. Traina F, Jankowska AM, Visconte V, Sugimoto Y, Szpurka H, et al... (2011) Impact of molecular mutations on treatment response to hypomethylating agents in MDS [abstract no. 461]. 53rd Annual Meeting and Exposition of the American Society of Hematology; 2011 Dec 10–13; San Diego (CA)
    1. Pons A, Nomdedeu B, Navarro A, Gaya A, Gel B, et al. (2009) Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma. 50: 1854–59.
    1. Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med. 13: 39–53.
    1. Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH (2010) MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 411: 846–52.

Source: PubMed

3
Subskrybuj