Inhibition of Quinolone- and Multi-Drug-Resistant Clostridioides Difficile Strains by Multi Strain Synbiotics-An Option for Diarrhea Management in Nursing Facilities

Henning Sommermeyer, Hanna M Pituch, Dorota Wultanska, Paulina Wojtyla-Buciora, Jacek Piatek, Malgorzata Bernatek, Henning Sommermeyer, Hanna M Pituch, Dorota Wultanska, Paulina Wojtyla-Buciora, Jacek Piatek, Malgorzata Bernatek

Abstract

Diarrhea is a common problem in nursing homes. A survey among nursing facilities in Poland was used to characterize diarrhea outbreaks, the burden caused for residents and caregivers and the employed measures. Survey results confirmed that diarrhea is a common problem in nursing homes and in most cases affects groups of residents. The related burden is high or very high for 27% of residents and 40% of caregivers. In 80% of nursing facilities pro or synbiotics are part of the measures used to manage diarrhea. Administration of these kinds of products has been suggested for the management of diarrhea, especially in cases caused by Clostridioides (C.) difficile. C. difficile is one of many potential causes for diarrhea, but is of particular concern for nursing homes because it is responsible for a large proportion of diarrhea outbreaks and is often caused by multi-drug resistant strains. In vitro inhibition of a quinolone-resistant and a multi-drug resistant C. difficile strain was used to evaluate the growth inhibitory effects of commonly used products containing probiotic microorganisms. Growth of both strains was best inhibited by multi-strain synbiotic preparations. These findings suggest that multi-strain synbiotics can be considered as an interventional option for diarrhea caused by C. difficile.

Keywords: Clostridioides difficile; antibiotics; gut microbiota; multi-drug resistance; nursing facility; pathogen inhibition; prebiotics; probiotics; ribotype 027; synbiotics.

Conflict of interest statement

Henning Sommermeyer works as a consultant for Vivatrex GmbH, a company which markets products containing probiotic microorganisms in Germany. Vivatrex GmbH was not involved in the design, collection, analyses or interpretation of data, in writing the manuscript, or in the decision to publish the results. All other authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
Average percentage of residents, indicated by column height, who had diarrhea at least once a year as function of nursing home size and average age of residents (total number of answers n = 55). Values were only calculated in cases where at least three answers were available for the respective size/age-category (n.d. = insufficient number of data).
Figure 2
Figure 2
Average number of patients affected by an individual diarrhea outbreak (total number of answers n = 59).
Figure 3
Figure 3
Burden related to diarrhea for nursing home residents and care givers as estimated by the nursing home management (total number of answers for burden for residents of n = 59 and for burden for care givers n = 59).
Figure 4
Figure 4
Interventions employed for the management of diarrhea cases in nursing facilities (total number of answers n = 59).
Figure 5
Figure 5
In vitro growth inhibition of C. difficile strains by different probiotics and two multi strain synbiotics. The L. rhamnosus E/N, Oxy, Pen mixture contains the three different probiotics in a CFU ratio of 40%/20%/40%. Detailed information about the composition of the multi strain synbiotics (containing 9 different bacterial probiotic and FOS) are provided under Materials and Methods.

References

    1. Laffan A.M., Bellantoni M.F., Greenough W.B., 3rd, Zenilman J.M. Burden of Clostridium difficile-associated diarrhea in a long-term care facility. J. Am. Geriatr. Soc. 2006;54:1068–1073. doi: 10.1111/j.1532-5415.2006.00768.x.
    1. Crogan N.L., Evans B.C. Clostridium difficile: An emerging epidemic in nursing homes. Geriatr. Nurs. 2007;28:161–164. doi: 10.1016/j.gerinurse.2007.04.005.
    1. Yu H., Baser O., Wang L. Burden of Clostridium difficile-associated disease among patients residing in nursing homes: A population-based cohort study. BMC Geriatr. 2016;16:193. doi: 10.1186/s12877-016-0367-2.
    1. Simor A.E., Bradley S.F., Strausbaugh L.J., Crossley K., Nicolle L.E., SHEA Long-Term-Care Committee Clostridium difficile in long-term-care facilities for the elderly. Infect. Control Hosp. Epidemiol. 2002;23:696–703. doi: 10.1086/501997.
    1. Hood K., Nuttall J., Gillespie D., Shepherd V., Wood F., Duncan D., Stanton H., Espinasse A., Wootton M., Acharjya A., et al. Probiotics for Antibiotic-Associated Diarrhoea (PAAD): A prospective observational study of antibiotic-associated diarrhoea (including Clostridium difficile-associated diarrhoea) in care homes. Health Technol. Assess. 2014;18:1–84. doi: 10.3310/hta18630.
    1. Spigaglia P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther. Adv. Infect. Dis. 2016;3:23–42. doi: 10.1177/2049936115622891.
    1. Slimings C., Riley T.V. Antibiotics and hospital-acquired Clostridium difficile infection: Update of systematic review and meta-analysis. J. Antimicrob. Chemother. 2014;69:881–891. doi: 10.1093/jac/dkt477.
    1. Johanesen P.A., Mackin K.E., Hutton M.L., Awad M.M., Larcombe S., Amy J.M., Lyras D. Disruption of the gut microbiome: Clostridium difficile infection and the threat of antibiotic resistance. Genes. 2015;6:1347–1360. doi: 10.3390/genes6041347.
    1. Buffie C.G., Pamer E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013;13:790–801. doi: 10.1038/nri3535.
    1. Kim S., Covington A., Pamer E.G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 2017;279:90–105. doi: 10.1111/imr.12563.
    1. Ducarmon Q.R., Zwittink R.D., Hornung B.V.H., van Schaik W., Young V.B., Kuijper E.J. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol. Mol. Biol. Rev. 2019;5:e00007-19. doi: 10.1128/MMBR.00007-19.
    1. Denève C., Janoir C., Poilane I., Fantinato C., Collignon A. New trends in Clostridium difficile virulence and pathogenesis. Int. J. Antimicrob. Agents. 2009;33:S24–S28. doi: 10.1016/S0924-8579(09)70012-3.
    1. Voth D.E., Ballard J.D. Clostridium difficile toxins: Mechanism of action and role in disease. Clin. Microbiol. Rev. 2005;18:247–263. doi: 10.1128/CMR.18.2.247-263.2005.
    1. Riggs M.M., Sethi A.K., Zabarsky T.F., Eckstein E.C., Jump R.L., Donskey C.J. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin. Infect. Dis. 2007;45:992–998. doi: 10.1086/521854.
    1. Boone J.H., Goodykoontz M., Rhodes S.J., Price K., Smith J., Gearhart K.N., Carman R.J., Kerkering T.M., Wilkins T.D., Lyerly D.M. Clostridium difficile prevalence rates in a large healthcare system stratified according to patient population, age, gender, and specimen consistency. Eur. J. Clin. Microbiol. Infect Dis. 2012;31:1551–1559. doi: 10.1007/s10096-011-1477-6.
    1. Freeman J., Vernon J., Morris K., Nicholson S., Todhunter S., Longshaw C., Wilcox M.H., Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin. Microbiol. Infect. 2015;21:e9–e248. doi: 10.1016/j.cmi.2014.09.017.
    1. Debast S.B., Bauer M.P., Kuijper E.J., European Society of Clinical Microbiology and Infectious Diseases European Society of Clinical Microbiology and Infectious Diseases: Update of the treatment guidance document for Clostridium difficile infection. Clin. Microbiol. Infect. 2014;20:1–26. doi: 10.1111/1469-0691.12418.
    1. McDonald L.C., Gerding D.N., Johnson S., Bakken J.S., Carroll K.C., Coffin S.E., Dubberke E.R., Garey K.W., Gould C.V., Kelly C., et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) Clin. Infect. Dis. 2018;66:e1–e48. doi: 10.1093/cid/cix1085.
    1. Peng Z., Jin D., Kim H.B., Stratton C.W., Wu B., Tang Y.W., Sun X. Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2017;55:1998–2008. doi: 10.1128/JCM.02250-16.
    1. Tenover F.C., Tickler I.A., Persing D.H. Antimicrobial-resistant strains of Clostridium difficile from North America. Antimicrob. Agents. Chemother. 2012;56:2929–2932. doi: 10.1128/AAC.00220-12.
    1. Goudarzi M., Goudarzi H., Alebouyeh M., Azimi Rad M., Shayegan Mehr F.S., Zali M.R., Aslani M.M. Antimicrobial susceptibility of clostridium difficile clinical isolates in iran. Iran. Red. Crescent. Med. J. 2013;15:704–711. doi: 10.5812/ircmj.5189.
    1. Lachowicz D., Pituch H., Wultańska D., Kuijper E., Obuch-Woszczatyński P. Surveillance of antimicrobial susceptibilities reveals high proportions of multidrug resistance in toxigenic Clostridium difficile strains in different areas of Poland. Anaerobe. 2020;62:102167. doi: 10.1016/j.anaerobe.2020.102167.
    1. Adler A., Miller-Roll T., Bradenstein R., Block C., Mendelson B., Parizade M., Paitan Y., Schwartz D., Peled N., Carmeli Y., et al. A national survey of the molecular epidemiology of Clostridium difficile in Israel: The dissemination of the ribotype 027 strain with reduced susceptibility to vancomycin and metronidazole. Diagn. Microbiol. Infect. Dis. 2015;83:21–24. doi: 10.1016/j.diagmicrobio.2015.05.015.
    1. Thorpe C.M., McDermott L.A., Tran M.K., Chang J., Jenkins S.G., Goldstein E.J.C., Patel R., Forbes B.A., Johnson S., Gerding D.N., et al. U.S.-Based National Surveillance for Fidaxomicin Susceptibility of Clostridioides difficile-Associated Diarrheal Isolates from 2013 to 2016. Antimicrob. Agents. Chemother. 2019;63:e00391-19. doi: 10.1128/AAC.00391-19.
    1. Freeman J., Vernon J., Pilling S., Morris K., Nicolson S., Shearman S., Clark E., Palacios-Fabrega J.A., Wilcox M., Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group Five-year Pan-European, longitudinal surveillance of Clostridium difficile ribotype prevalence and antimicrobial resistance: The extended ClosER study. Eur. J. Clin. Microbiol. Infect. Dis. 2020;39:169–177. doi: 10.1007/s10096-019-03708-7.
    1. Naaber P., Smidt I., Štšepetova J., Brilene T., Annuk H., Mikelsaar M. Inhibition of Clostridium difficile strains by intestinal Lactobacillus species. J. Med. Microbiol. 2004;53:551–554. doi: 10.1099/jmm.0.45595-0.
    1. Schoster A., Kokotovic B., Permin A., Pedersen P.D., Dal Bello F., Guardabassi L. In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains. Anaerobe. 2013;20:36–41. doi: 10.1016/j.anaerobe.2013.02.006.
    1. Piatek J., Krauss H., Ciechelska-Rybarczyk A., Bernatek’ M., Wojtyla-Buciora P., Sommermeyer H. In-Vitro Growth Inhibition of Bacterial Pathogens by Probiotics and a Synbiotic: Product Composition Matters. Int. J. Environ. Res. Public Health. 2020;17:3332. doi: 10.3390/ijerph17093332.
    1. Plummer S., Weaver M.A., Harris J.C., Dee P., Hunter J. Clostridium difficile pilot study: Effects of probiotic supplementation on the incidence of C. difficile diarrhoea. Int. Microbiol. 2004;7:59–62.
    1. Lawley T.D., Clare S., Walker A.W., Stares M.D., Connor T.R., Raisen C., Goulding D., Rad R., Schreiber F., Brandt C., et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 2012;8:e1002995. doi: 10.1371/journal.ppat.1002995.
    1. Buts J.P., De Keyser N., De Raedemaeker L. Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatric Res. 1994;36:522–527. doi: 10.1203/00006450-199410000-00019.
    1. Qamar A., Aboudola S., Warny M., Michetti P., Pothoulakis C., LaMont J.T., Kelly C.P. Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice. Infect. Immun. 2001;69:2762–2765. doi: 10.1128/IAI.69.4.2762-2765.2001.
    1. Corthier G., Dubos F., Raibaud P. Modulation of cytotoxin production by Clostridium difficile in the intestinal tracts of gnotobiotic mice inoculated with various human intestinal bacteria. Appl. Environ. Microbiol. 1985;49:250–252. doi: 10.1128/AEM.49.1.250-252.1985.
    1. Reeves A.E., Koenigsknecht M.J., Bergin I.L., Young V.B. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect. Immun. 2012;80:3786–3794. doi: 10.1128/IAI.00647-12.
    1. Lau C.S., Chamberlain R.S. Probiotics are effective at preventing Clostridium difficile-associated diarrhea: A systematic review and meta-analysis. Int. J. Gen. Med. 2016;9:27–37. doi: 10.2147/IJGM.S98280.
    1. Pillai A., Nelson R. Probiotics for treatment of Clostridium difficile-associated colitis in adults. Cochrane Database Syst. Rev. 2008:CD004611. doi: 10.1002/14651858.CD004611.pub2.
    1. Goldenberg J.Z., Yap C., Lytvyn L., Lo C.K., Beardsley J., Mertz D., Johnston B.C. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst. Rev. 2017;12:CD006095. doi: 10.1002/14651858.CD006095.pub4.
    1. Lachowicz D., Pituch H., Obuch-Woszczatyński P. Antimicrobial susceptibility patterns of Clostridium difficile strains belonging to different polymerase chain reaction ribotypes isolated in Poland in 2012. Anaerobe. 2015;31:37–41. doi: 10.1016/j.anaerobe.2014.09.004.
    1. Jarocki P., Podlesny M., Wasko A., Siuda A., Targonski Z. Differentiation of three Lactobacillus rhamnosus strains (E/N, Oxy and Pen) by SDS-PAGE and two-dimensional electrophoresis of surface-associated proteins. J. Microbiol. Biotechnol. 2010;20:558–562. doi: 10.4014/jmb.0908.08003.
    1. Clostridioides difficile (Prevot) Lawson et al. (ATCC® 9689™) [(accessed on 8 February 2021)]; Available online: .
    1. Kuijper E.J., Coignard B., Tüll P., ESCMID Study Group for Clostridium Difficile. EU Member States. European Centre for Disease Prevention and Control Emergence of Clostridium difficile-associated disease in North America and Europe. Clin. Microbiol. Infect. 2006;12:2–18. doi: 10.1111/j.1469-0691.2006.01580.x.
    1. Obuch-Woszczatyński P., Lachowicz D., Schneider A., Mól A., Pawłowska J., Ożdżeńska-Milke E., Pruszczyk P., Wultańska D., Młynarczyk G., Harmanus C., et al. Occurrence of Clostridium difficile PCR-ribotype 027 and it’s closely related PCR-ribotype 176 in hospitals in Poland in 2008-2010. Anaerobe. 2014;28:13–17. doi: 10.1016/j.anaerobe.2014.04.007.
    1. Stubbs S.L., Brazier J.S., O’Neill G.L., Duerden B.I. PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J. Clin. Microbiol. 1999;37:461–463. doi: 10.1128/JCM.37.2.461-463.1999.
    1. ETEST®. [(accessed on 8 February 2021)]; Available online: .
    1. EUCAST: European Committee on Antimicrobial Susceptibility Testing Clinical Breakpoints and Dosing of Antibiotics. [(accessed on 8 February 2021)]; Available online:
    1. Carpenter D.E., Anderson K., Citron D.M., Dzink-Fox J.L., Hackel M., Jenkins S.G., Knapp C., Koeth L., Schuetz A.N., Wexler H. Methods for antimicrobial susceptibility testing of anaerobic bacteria. CLSI standard M11. 9th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2018. pp. 1–47.
    1. Schaedler R.W., Dubos R., Costello R. The development of the bacterial flora in the gastrointestinal tract of mice. J. Exp. Med. 1965;122:59–66. doi: 10.1084/jem.122.1.59.
    1. Zaklady Stacjonarne Pomocy Spolecznej w 2019 r. [(accessed on 8 February 2021)]; Available online: .
    1. Kim J.H., Toy D., Muder R.R. Clostridium difficile infection in a long-term care facility: Hospital-associated illness compared with long-term care-associated illness. Infect. Control Hosp. Epidemiol. 2011;32:656–660. doi: 10.1086/660767.
    1. Keller J.M., Surawicz C.M. Clostridium difficile infection in the elderly. Clin. Geriatr. Med. 2014;30:79–93. doi: 10.1016/j.cger.2013.10.008.
    1. Asempa T.E., Nicolau D.P. Clostridium difficile infection in the elderly: An update on management. Clin. Interv. Aging. 2017;12:1799–1809. doi: 10.2147/CIA.S149089.
    1. Piatek J., Bernatek M., Ciechelska-Rybarczyk A., Oleskow B., Sommermeyer H. Inhibition of Carbapenem-Resistant NDM-1 Klebsiella pneumoniae isolated from a Hospital Outbreak Patient by a Synbiotic: A Nonantibiotic Treatment Option. Int. J. Med. Res. Health Sci. 2019;8:12–20.
    1. Timmerman H.M., Koning C.J., Mulder L., Rombouts F.M., Beynen A.C. Monostrain, multistrain and multispecies probiotics--A comparison of functionality and efficacy. Int. J. Food. Microbiol. 2004;96:219–233. doi: 10.1016/j.ijfoodmicro.2004.05.012.
    1. El Hage R., Hernandez-Sanabria E., Van de Wiele T. Emerging Trends in “Smart Probiotics”: Functional Consideration for the Development of Novel Health and Industrial Applications. Front. Microbiol. 2017;8:1889. doi: 10.3389/fmicb.2017.01889.
    1. Markowiak P., Śliżewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017;9:1021. doi: 10.3390/nu9091021.

Source: PubMed

3
Subskrybuj