Birth weight and long-term overweight risk: systematic review and a meta-analysis including 643,902 persons from 66 studies and 26 countries globally

Karen Schellong, Sandra Schulz, Thomas Harder, Andreas Plagemann, Karen Schellong, Sandra Schulz, Thomas Harder, Andreas Plagemann

Abstract

Background: Overweight is among the major challenging health risk factors. It has been claimed that birth weight, being a critical indicator of prenatal developmental conditions, is related to long-term overweight risk. In order to check this important assumption of developmental and preventive medicine, we performed a systematic review and comprehensive meta-analysis.

Methods and findings: Relevant studies published up to January 2011 that investigated the relation between birth weight and later risk of overweight were identified through literature searches using MEDLINE and EMBASE. For meta-analysis, 66 studies from 26 countries and five continents were identified to be eligible, including 643,902 persons aged 1 to 75 years. We constructed random-effects and fixed-effects models, performed subgroup-analyses, influence-analyses, assessed heterogeneity and publication bias, performed meta-regression analysis as well as analysis of confounder adjusted data. Meta-regression revealed a linear positive relationship between birth weight and later overweight risk (p<0.001). Low birth weight (<2,500 g) was found to be followed by a decreased risk of overweight (odds ratio (OR) =0.67; 95% confidence interval (CI) 0.59-0.76). High birth weight (>4,000 g) was associated with increased risk of overweight (OR=1.66; 95% CI 1.55-1.77). Results did not change significantly by using normal birth weight (2,500-4,000 g) as reference category (OR=0.73, 95% CI 0.63-0.84, and OR=1.60, 95% CI 1.45-1.77, respectively). Subgroup- and influence-analyses revealed no indication for bias/confounding. Adjusted estimates indicate a doubling of long-term overweight risk in high as compared to normal birth weight subjects (OR=1.96, 95% CI 1.43-2.67).

Conclusions: Findings demonstrate that low birth weight is followed by a decreased long-term risk of overweight, while high birth weight predisposes for later overweight. Preventing in-utero overnutrition, e.g., by avoiding maternal overnutrition, overweight and/or diabetes during pregnancy, might therefore be a promising strategy of genuine overweight prevention, globally.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flow diagram of selection process.
Figure 1. Flow diagram of selection process.
Course of systematic literature review on birth weight and risk of overweight later in life, 1966–January 2011.
Figure 2. Low birth weight (
Figure 2. Low birth weight (
ORs for overweight in subjects with birth weights (center of each black square) and the statistical size (proportional area of square) are represented. Horizontal lines indicate 95% confidence intervals. The pooled odds ratio (diamond) was calculated by means of a random effects model. OR, odds ratio; CI, confidence interval.
Figure 3. High birth weight (>4,000…
Figure 3. High birth weight (>4,000 g) and subsequent risk of overweight.
ORs for overweight in subjects with birth weights >4,000 g as compared with subjects with birth weights ≤4,000 g. Studies are ordered alphabetically by first author. The point estimate (center of each black square) and the statistical size (proportional area of square) are represented. Horizontal lines indicate 95% confidence intervals. The pooled odds ratio (diamond) was calculated by means of a random effects model. OR, odds ratio; CI, confidence interval.
Figure 4. Relationship between birth weight and…
Figure 4. Relationship between birth weight and risk of overweight.
Continuous relation between birth weight and later risk of overweight, calculated by fractional polynomial regression. Studies are represented by black dots. Grey shading indicates the 95% confidence interval around the fitted line. The model was estimated from a robust regression model based on second-order fractional polynomial (−1, −0.5) functions weighted by/variance.

References

    1. King D (2011) The future challenge of obesity. Lancet 378: 743–744.
    1. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, et al. (2003) Prevalence of obesity, diabetes, and obesity related health risk factors, 2001. JAMA 289: 76–79.
    1. Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM (2010) Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA 303: 242–249.
    1. Tirosh A, Shai I, Afek A, Dubnov-Raz G, Ayalon N, et al. (2011) Adolescent BMI trajectory and risk of diabetes versus coronary disease. N Engl J Med 364: 1315–1325.
    1. Nordestgaard BG, Palmer TM, Benn M, Zacho J, Tybjaerg-Hansen A, et al. (2012) The effect of elevated body mass index on ischemic heart disease risk: causal estimates from a mendelian randomisation approach. PLoS Med 9: e1001212.
    1. Prospective studies collaboration (2009) Body mass index and cause-specific mortality in 900000 adults: collaborative analyses of 57 prospective studies. Lancet 373: 1083–1096.
    1. Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, et al. (2010) Body-mass index and mortality among 1.46 million white adults. N Engl J Med 363: 2211–2219.
    1. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, et al. (2010) Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med 362: 485–493.
    1. Boggs DA, Rosenberg L, Cozier YC, Wise LA, Coogan PF, et al. (2011) General and abdominal obesity and risk of death among black women. N Engl J Med 365: 901–908.
    1. Barker DJ, Hales CN, Fall CHD, Osmond C, Phipps K, et al. (1993) Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36: 62–67.
    1. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359: 61–73.
    1. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60: 5–20.
    1. Brooks AA, Johnson MR, Steer PJ, Pawson ME, Abdalla HI (1995) Birth weight: nature or nurture? Early Hum Dev 42: 29–35.
    1. Lunde A, Melve KK, Gjessing HK, Skjaerven R, Irgens LM (2007) Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data. Am J Epidemiol 165: 734–741.
    1. Harder T, Schellong K, Stupin J, Dudenhausen JW, Plagemann A (2007) “Where is the evidence that low birthweight leads to obesity?” [letter]. Lancet 369: 1859.
    1. Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, et al. (2005) Being big or growing fast: systematic review of size and growth in infancy and later obesity. BMJ 331: 929.
    1. Yu ZB, Han SP, Zhu GZ, Zhu C, Wang XJ, et al. (2011) Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obes Rev 12: 525–542.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) The Prisma Group (2009) Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. PLoS Med 7: 1006–1012.
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analysis. BMJ 327: 557–560.
    1. Berlin JA, Longnecker MP, Greenland S (1993) Meta-analysis of epidemiologic dose-response data. Epidemiology 4: 218–228.
    1. Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 135: 1301–1308.
    1. Royston P, Ambler G, Sauerbrei W (1999) The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol 28: 964–974.
    1. Harder T, Roepke K, Diller N, Stechling Y, Dudenhausen JW, et al. (2009) Birth weight, early weight gain, and subsequent risk of type 1 diabetes: systematic review and meta-analysis. Am J Epidemiol 169: 1428–1436.
    1. Cardwell CR, Patterson CC (2009) Re: “Birth weight, early weight gain, and subsequent risk of type 1 diabetes” [letter]. Am J Epidemiol 170: 529–530.
    1. Harder T, Plagemann A (2009) “Authors' reply: Birth weight, early weight gain and subsequent risk of type 1 diabetes: systematic review and meta-analysis” [letter]. Am J Epidemiol 170: 530–531.
    1. Araújo CL, Hallal PC, Nader GA, Neutzling MB, deFátima Vieira M, et al. (2009) Effect of birth size and proportionality on BMI and skinfold thickness in early adolescence: prospective birth cohort study. Eur J Clin Nutr 63: 634–639.
    1. Binkin NJ, Yip R, Fleshood L, Trowbridge FL (1988) Birth weight and childhood growth. Pediatrics 82: 828–834.
    1. Boney CM, Verma A, Tucker R, Vohr BR (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115: 290–296.
    1. Bouhours-Nouet N, Dufresne S, de Casson FB, Mathieu E, Douay O, et al. (2008) High birth weight and early postnatal weight gain protect obese children and adolescents from truncal adiposity and insulin resistance: metabolically healthy but obese subjects? Diabetes Care 31: 1031–1036.
    1. Celi F, Bini V, De Giorgi G, Molinari D, Faraoni F, et al. (2003) Epidemiology of overweight and obesity among school children and adolescents in three provinces of central Italy, 1993–2001: study of potential influencing variables. Eur J Clin Nutr 57: 1045–1051.
    1. Charney E, Goodman HC, McBride M, Lyon B, Pratt R (1976) Childhood antecedents of adult obesity. Do chubby infants become obese adults? N Engl J Med 295: 6–9.
    1. da Costa Ribeiro I, Taddei JAAC, Colugnatti F (2003) Obesity among children attending elementary public schools in São Paulo, Brazil: a case-control study. Public Health Nutr 6: 659–663.
    1. Drachler M de L, Macluf SP, Leite JC, Aerts DR, Giugliani ER, et al. (2003) Risk factors for overweight in children from Southern Brazil (Portuguese). Cad Saúde Pública 19: 1073–1081.
    1. de Moraes SA, Beltrán Rosas J, Mondini L, Freitas IC (2006) Prevalence of overweight and obesity, and associated factors in school children from urban area in Chilpancingo, Guerrero, Mexico, 2004 (Portuguese). Cad Saúde Pública 22: 1289–1301.
    1. Dieu HTT, Dibley MJ, Sibbritt D, Hanh TT (2007) Prevalence of overweight and obesity in preschool children and associated socio-demographic factors in Ho Chi Minh City, Vietnam. Int J Pediatr Obes 2: 40–50.
    1. Dubois L, Girard M (2006) Early determinants of overweight at 4.5 years in a population-based longitudinal study. Int J Obes 30: 610–617.
    1. Eriksson J, Forsén T, Tuomilehto J, Osmond C, Barker D (2001) Size at birth, childhood growth and obesity in adult life. Int J Obes 25: 735–740.
    1. Frye C, Heinrich J (2003) Trends and predictors of overweight and obesity in East German children. Int J Obes 27: 963–969.
    1. Fuiano N, Rapa A, Monzani A, Pietrobelli A, Diddi G, et al. (2008) Prevalence and risk factors for overweight and obesity in a population of Italian schoolchildren: a longitudinal study. J Endocrinol Invest 31: 979–984.
    1. Guimarães LV, de Azevedo Barros MB, Martins MSAS, Duarte EC (2006) Factors associated with overweight in schoolchildren (Portuguese). Rev Nutr 19: 5–17.
    1. Hack M, Schluchter M, Cartar L, Rahman M, Cuttler L, et al. (2003) Growth of very low birth weight infants to age 20 years. Pediatrics 112 e: 30–38.
    1. Hawkins SS, Cole TJ (2009) Law C; Millennium Cohort Study Child Health Group (2009) An ecological systems approach to examining risk factors for early childhood overweight: findings from the UK Millennium Cohort Study. J Epidemiol Community Health 63: 147–155.
    1. Hui LL, Nelson EA, Yu LM, Li AM, Fok TF (2003) Risk factors for childhood overweight in 6-7-y-old Hong Kong children. Int J Obes 27: 1411–1418.
    1. Koupil I, Toivanen P (2008) Social and early-life determinants of overweight and obesity in 18-year-old Swedish men. Int J Obes (Lond) 32: 73–81.
    1. Leong NM, Mignone LI, Newcomb PA, Titus-Ernstoff L, Baron JA, et al. (2003) Early life risk factors in cancer: the relation of birth weight to adult obesity. Int J Cancer 103: 789–791.
    1. Li C, Goran MI, Kaur H, Nollen N, Ahluwalia JS (2007) Developmental trajectories of overweight during childhood: role of early life factors. Obesity 15: 760–771.
    1. Locard E, Mamelle N, Billette A, Miginiac M, Munoz F, et al. (1992) Risk factors of obesity in a five year old population. Parental versus environmental factors. Int J Obes 16: 721–729.
    1. Lundgren EM, Cnattingius S, Jonsson B, Tuvemo T (2003) Prediction of adult height and risk of overweight in females born small-for-gestational-age. Paediatr Perinat Epidemiol 17: 156–163.
    1. Maddah M (2009) Risk factors for overweight in urban and rural school girls in Iran: skipping breakfast and early menarche. Int J Cardiol 136: 235–238.
    1. Mazur A, Małecka-Tendera E, Klimek K (2003) Risk factors of obesity in primary school children from the Podkarpacie Region Part II. Obesity risk factors in girls (Polish). Pediatr Pol 78: 889–895.
    1. Mazur A, Małecka-Tendera E, Klimek K (2003) Risk factors of obesity in primary school children from the Podkarpacie Region Part I. Obesity risk factors in boys. (Polish). Pediatr Pol 78: 881–888.
    1. Mazur A, Klimek K, Telega G, Hejda G, Wdowiak L, et al. (2008) Risk factors for obesity development in school children from south-eastern Poland. Ann Agric Environ Med 15: 281–285.
    1. Meas T, Deghmoun S, Armoogum P, Alberti C, Levy-Marchal C (2008) Consequences of being born small for gestational age on body composition: an 8-year follow-up study. J Clin Endocrinol Metab 93: 3804–3809.
    1. Mogan J (1986) Parental weight and its relation to infant feeding patterns and infant obesity. Int J Nurs Stud 23: 255–264.
    1. O'Callaghan MJ, Williams GM, Andersen MJ, Bor W, Najman JM (1997) Prediction of obesity in children at 5 years: a cohort study. J Paediatr Child Health 33: 311–316.
    1. Ochoa MC, Moreno-Aliaga MJ, Martínez-González MAM, Martínez JA, Marti A; GENOI Members (2007) Predictor factors for childhood obesity in a Spanish case-control study. Nutrition 23: 379–384.
    1. Olson CM, Strawderman MS, Dennison BA (2009) Maternal weight gain during pregnancy and child weight at age 3 years. Matern Child Health J 13: 839–846.
    1. Rugholm S, Baker JL, Olsen LW, Schack-Nielsen L, Bua J, et al. (2005) Stability of the association between birth weight and childhood overweight during the development of the obesity epidemic. Obes Res 13: 2187–2194.
    1. Savva SC, Tornaritis M, Chadjigeorgiou C, Kourides YA, Savva ME, et al. (2005) Prevalence and socio-demographic associations of undernutrition and obesity among preschool children in Cyprus. Eur J Clin Nutr 59: 1259–1265.
    1. Seidman DS, Laor A, Stevenson DK, Sivan E, Gale R, et al. (1998) Macrosomia does not predict overweight in late adolescence in infants of diabetic mothers. Acta Obstet Gynecol Scand 77: 58–62.
    1. Serra-Majem L, Bartrina JA, Pérez-Rodrigo C, Ribas-Barba L, Delgado-Rubio A (2006) Prevalence and determinants of obesity in Spanish children and young people. Br J Nutr 96: S67–72.
    1. Shehadeh N, Weitzer-Kish H, Shamir R, Shihab R, Weiss R (2008) Impact of early postnatal weight gain and feeding patterns on body mass index in adolescence. J Pediatr Endocrinol Metab 21: 9–15.
    1. Strufaldi MW, Silva EM, Franco MC, Puccini RF (2009) Blood pressure levels in childhood: probing the relative importance of birth weight and current size. Eur J Pediatr 168: 619–624.
    1. Sugimori H, Yoshida K, Miyakawa M, Izuno T, Kishimoto T, et al. (1997) Influence of behavioral and environmental factors on the development of obesity in three-year-old children. A case-control study based on Toyama Study. Environ Health Prev Med 2: 74–78.
    1. Takahashi E, Yoshida K, Sugimori H, Miyakawa M, Izuno T, et al. (1999) Influence factors on the development of obesity in 3-year-old children based on the Toyama study. Prev Med 28: 293–296.
    1. Terry MB, Wei Y, Esserman D (2007) Maternal, birth, and early-life influences on adult body size in women. Am J Epidemiol 166: 5–13.
    1. Vohr BR, Lipsitt LP, Oh W (1980) Somatic growth of children of diabetic mothers with reference to birth size. J Pediatr 97: 196–199.
    1. Aarup M, Sokolowski I, Lous J (2008) The prevalence of obesity and overweight among 3 year-old children in the municipality of Aalborg and identification of risk factors (Danish). Ugeskr Laeger 170: 452–456.
    1. Apfelbacher CJ, Loerbroks A, Cairns J, Behrendt H, Ring J, et al. (2008) Predictors of overweight and obesity in five to seven-year-old children in Germany: results from cross-sectional studies. BMC Public Health 8: 171.
    1. Armstrong J, Reilly JJ (2002) Child Health Information Team (2002) Breastfeeding and lowering the risk of childhood obesity. Lancet 359: 2003–2004.
    1. Barros AJ, Victora CG, Santos IS, Matijasevich A, Araújo Cl, et al. (2008) Infant malnutrition and obesity in three population-based birth cohort studies in Southern Brazil: trends and differences. Cad Saude Publica 24: S417–426.
    1. Barta L, Domján O (1965) Birthweight of obese and diabetic children. Acta Paediatr Acad Sci Hung 6: 163–170.
    1. Barthel B, Cariou C, Lebas-Saison E, Momas I (2001) Prevalence of obesity in childhood: study in Paris elementary schools (French). Santé Publique 13: 7–15.
    1. Burdette HL, Whitaker RC (2007) Differences by race and ethnicity in the relationship between breastfeeding and obesity in preschool children. Ethn Dis 17: 467–470.
    1. Chen A, Pennell ML, Klebanoff MA, Rogan WJ, Longnecker MP (2006) Maternal smoking during pregnancy in relation to child overweight: follow-up to age 8 years. Int J Epidemiol 35: 121–130.
    1. Coy JF, Lewis IC, Mair CH, Longmore EA, Ratkowsky DA (1973) The growth of Tasmanian infants from birth to three years of age. Med J Aust 2: 12–18.
    1. Curhan GC, Willett WC, Rimm EB, Spiegelman D, Ascherio AL, et al. (1996) Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation 94: 3246–3250.
    1. Danielzik S, Czerwinski-Mast M, Langnäse K, Dilba B, Müller MJ (2004) Parental overweight, socioeconomic status and high birth weight are the major determinants of overweight and obesity in 5-7 y-old children: baseline data of the Kiel Obesity Prevention Study (KOPS). Int J Obes 28: 1494–1502.
    1. Dennison BA, Edmunds LS, Stratton HH, Pruzek RM (2006) Rapid infant weight gain predicts childhood overweight. Obesity 14: 491–499.
    1. Dutra CL, Araújo CL, Bertoldi AD (2006) Prevalence of overweight in adolescents: a population-based study in a southern Brazilian city (Portuguese). Cad Saúde Pública 22: 151–162.
    1. Gallaher MM, Hauck FR, Yang-Oshida M, Serdula MK (1991) Obesity among mescalero preschool children. Association with maternal obesity and birth weight. Am J Dis Child 145: 1262–1265.
    1. Gigante DP, Victora CG, Araújo CLP, Barros FC (2003) Trends in the nutritional profile of children born in 1993 in Pelotas, Rio Grande do Sul, Brazil: Longitudinal analyses (Portuguese). Cad Saúde Pública 19: 141–147.
    1. Gigante DP, Minten GC, Horta BL, Barros FC, Victora CG (2008) [Nutritional evaluation follow-up of the 1982 birth cohort, Pelotas, Southern Brazil] (Portuguese). Rev Saude Publica 42: 60–69.
    1. Gillman MW, Rifas-Shiman S, Berkey CS, Field AE, Colditz GA (2003) Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics 111: 221–226.
    1. He Q, Ding ZY, Fong DY, Karlberg J (2000) Risk factors of obesity in preschool children in China: a population-based case-control study. Int J Obes 24: 1528–1536.
    1. Hirschler V, Bugna J, Roque M, Gilligan T, Gonzalez C (2008) Does low birth weight predict obesity/overweight and metabolic syndrome in elementary school children? Arch Med Res 39: 796–802.
    1. Hui LL, Nelson EA, Yu LM, Li AM, Fok TF (2003) Risk factors for childhood overweight in 6–7-y-old Hong Kong children. Int J Obes 27: 1411–1418.
    1. Kang HT, Ju YS, Park KH, Kwon YJ, Im HJ, et al. (2006) Study on the relationship between childhood obesity and various determinants, including socioeconomic factors, in an urban area (Korean). J Prev Med Pub Health 39: 371–378.
    1. Kersey M, Lipton R, Sanchez-Rosado M, Kumar J, Thisted R (2005) Breast-feeding history and overweight in Latino preschoolers. Ambul Pediatr 5: 355–358.
    1. Kleiser C, Schaffrath Rosario A, Mensink BM G, Urban K, Bukowska C (2009) Potential determinants of obesity among children and adolescents in Germany: results from the cross-sectional KiGGS study. BMC Public Health 9: 46.
    1. Kniażewska M, Obuchowicz A, Żmudzińska-Kitczak J, Urban K, Bukowska C (2006) Assessment of association of birth weight and existence of hypertension in children and adolescents normostenic, obese or with metabolic syndrome. (Polish). Przegl Lek 63: 118–120.
    1. Kromeyer-Hauschild K, Zellner K, Jaeger U, Hoyer H (1999) Prevalence of overweight and obesity among school children in Jena (Germany). Int J Obes 23: 1143–1150.
    1. Laitinen J, Power C, Jarvelin MR (2001) Family social class, maternal body mass index, childhood body mass index, and age of menarche as predictors of adult obesity. Am J Clin Nutr 74: 287–294.
    1. Maffeis C, Micciolo R, Must A, Zaffanello M, Pinelli L (1994) Parental and perinatal factors associated with childhood obesity in north-east Italy. Int J Obes 18: 301–305.
    1. Mangrio E, Lindström M, Rosvall M (2010) Early life factors and being overweight at 4 years of age among children in Malmö, Sweden. BMC Public Health 10: 764.
    1. Mardones F, Villarroel L, Karzulovic L, Barja S, Arnaiz P (2008) Association of perinatal factors and obesity in 6- to 8-year-old Chilean children. Int J Epidemiol 37: 902–910.
    1. Mikulandra F, Grgurić J, Banović I, Perisa M, Zakanj Z (2000) The effect of high birth weight (4000 g or more) on weight and height of adult men and women. Coll Antropol 24: 133–136.
    1. Miletić T, Mikulandra F, Stoini E, Anic J, Perisa M (2004) The relationship of birth weight and length to weight, height and body mass index in adult women. (Croatian). Gynaecol Perinatol 13: 13–5.
    1. Monteiro POA, Victora CG, Barros FC, Monteiro LMA (2003) Birth size, early childhood growth, and adolescent obesity in a Brazilian birth cohort. Int J Obes 27: 1274–1282.
    1. Newby PK, Dickman PW, Adami HO, Wolk A (2005) Early anthropometric measures and reproductive factors as predictors of body mass index and obesity among older women. Int J Obes 29: 1084–1092.
    1. Oldroyd J, Renzaho A, Skouteris H (2010) Low and high birth weight as risk factors for obesity among 4 to 5-year-old Australian children: does gender matter? Eur J Pediatr 170: 899–906.
    1. Osler M, Lund R, Kriegbaum M, Andersen AM (2009) The influence of birth weight and body mass in early adulthood on early coronary heart disease risk among Danish men born in 1953. Eur J Epidemiol 24: 57–61.
    1. Padez C, Mourão I, Moreira P, Rosado V (2005) Prevalence and risk factors for overweight and obesity in Portuguese children. Acta Paediatr Int J Paediatr 94: 1550–1557.
    1. Panagiotakos DB, Papadimitriou A, Anthracopoulos MB, Konstantinidou M, Antonogeorgos G (2008) Birthweight, breast-feeding, parental weight and prevalence of obesity in schoolchildren aged 10-12 years, in Greece; the Physical Activity, Nutrition and Allergies in Children Examined in Athens (PANACEA) study. Pediatr Int 50: 563–568.
    1. Péter S, Bíró L, Németh A, Antal M (2008) Association between birth weight and childhood obesity in a Budapest metropolitan survey. (Hungarian). Orv Hetil. 149: 407–410.
    1. Phillips DIW, Young JB (2000) Birth weight, climate at birth and the risk of obesity in adult life. Int J Obes 24: 281–287.
    1. Pilpel D, Leer A, Phillip M (1995) Obesity among Jewish and Bedouin secondary school students in the Negev, Israel. Public Health Rev 23: 253–262.
    1. Plagemann A, Harder T, Kohlhoff R, Rohde W, Dörner G (1997) Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int J Obes 21: 451–456.
    1. Reilly JJ, Armstrong J, Dorosty AR, Emmett PM, Ness A (2005) Early life risk factors for obesity in childhood: cohort study. BMJ 330: 1357.
    1. Rose D, Bodor JN (2006) Household food insecurity and overweight status in young school children: Results from the Early Childhood Longitudinal study. Pediatrics 117: 464–473.
    1. Schaefer-Graf UM, Pawliczak J, Passow D, Hartmann R, Rossi R (2005) Birth weight and parental BMI predict overweight in children from mothers with gestational diabetes. Diabetes Care. 28: 1745–1750.
    1. Seidman DS, Laor A, Gale R, Stevenson DK, Danon YL (1991) A longitudinal study of birth weight and being overweight in late adolescence. Am J Dis Child 145: 782–785.
    1. Sørensen HT, Sabroe S, Rothman KJ, Gillman M, Fischer P, et al. (1997) Relation between weight and length at birth and body mass index in young adulthood: cohort study. BMJ 315: 1137.
    1. Stettler N, Bovet P, Shamlaye H, Zemel BS, Stallings VA, et al. (2002) Prevalence and risk factors for overweight and obesity in children from Seychelles, a country in rapid transition: the importance of early growth. Int J Obes 26: 214–219.
    1. Stettler N, Zemel BS, Kumanyika S, Stallings VA (2002) Infant weight gain and childhood overweight status in a multicenter, cohort study. Pediatrics 109: 194–199.
    1. Stettler N, Kumanyika SK, Katz SH, Zemel BS, Stallings VA (2003) Rapid weight gain during infancy and obesity in young adulthood in a cohort of African Americans. Am J Clin Nutr 77: 1374–1378.
    1. Sugihara S, Sasaki N, Amemiya S, Kohno H, Tanaka T (2008) Analysis of weight at birth and at diagnosis of childhood-onset type 2 diabetes mellitus in Japan. Pediatr Diabetes 9: 285–290.
    1. Takatani H, Okada T, Kaneda A (1967) Survey of infant obesity 3 years later. (Japanese). Nippon Shonika Gakkai Zasshi 71: 309–313.
    1. Tene CE, Espinoza-Mejía MY, Silva-Rosales NA, Girón-Carrillo JL (2003) High birth weight as a risk factor for childhood obesity. (Spanish). Gac Med Mex 139: 15–20.
    1. Tian JY, Cheng Q, Song XM, Li G, Jiang GX (2006) Birth weight and risk of type 2 diabetes, abdominal obesity and hypertension among Chinese adults. Eur J Endocrinol 155: 601–607.
    1. Tomé FS, Cardoso VC, Barbieri MA, Silva AA, Simões VM (2007) Are birth weight and maternal smoking during pregnancy associated with malnutrition and excess weight among school age children? Braz J Med Biol Res 40: 1221–1230.
    1. Toschke AM, Vignerova J, Lhotska L, Osancova K, Koletzko B, et al. (2002) Overweight and obesity in 6- to 14-year-old Czech children in 1991: protective effect of breast-feeding. J Pediatr 141: 764–769.
    1. Turkkahraman D, Bircan I, Tosun O, Saka O (2006) Prevalence and risk factors of obesity in school children in Antalya, Turkey. Saudi Med J 27: 1028–1033.
    1. Verdy M, Gagnon MA, Caron D (1974) Birth weight and adult obesity in children of diabetic mothers. N Engl J Med 290: 576.
    1. Vitolo MR, Gama CM, Bortolini GA, Campagnolo PD, Drachler Mde L (2008) Some risk factors associated with overweight, stunting and wasting among children under 5 years old. J Pediatr (Rio J) 84: 251–257.
    1. von Kries R, Koletzko B, Sauerwald T, von Mutius E, Barnert D, et al. (1999) Breast feeding and obesity: cross sectional study. BMJ 319: 147–150.
    1. von Kries R, Toschke AM, Koletzko B, Slikker W (2002) Maternal smoking during pregnancy and childhood obesity. Am J Epidemiol 156: 954–961.
    1. Wang Y, Gao E, Wu J, Zhou J, Yang Q, et al. (2009) Fetal macrosomia and adolescence obesity: results from a longitudinal cohort study. Int J Obes 33: 923–928.
    1. Wei JN, Li HY, Sung FC, Lin CC, Chiang CC, et al. (2007) Birth weight correlates differently with cardiovascular risk factors in youth. Obesity 15: 1609–1616.
    1. Weyermann M, Rothenbacher D, Brenner H (2006) Duration of breastfeeding and risk of overweight in childhood: a prospective birth cohort study from Germany. Int J Obes 30: 1281–1287.
    1. Ylihärsilä H, Kajantie E, Osmond C, Forsén T, Barker DJ, et al. (2007) Birth size, adult body composition and muscle strength in later life. Int J Obes 31: 1392–1399.
    1. Yu Z, Sun JQ, Haas JD, Gu Y, Li Z, et al. (2008) Macrosomia is associated with high weight-for-height in children aged 1–3 years in Shanghai, China. Int J Obes 32: 55–60.
    1. Zhang X, Liu E, Tian Z, Wang W, Ye T, et al. (2009) High birth weight and overweight of obesity among Chinese children 3.6 years old. Preventive Medicine 49: 172–178.
    1. Huxley R, Neil A, Collins R (2002) Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet 360: 659–665.
    1. Huxley R, Owen CG, Whincup PH, Cook DG, Colman S, et al. (2004) Birth weight and subsequent cholesterol levels. Exploration of the “fetal origins” hypothesis. JAMA 292: 2755–2764.
    1. Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A (2007) Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol 165: 849–857.
    1. Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, et al. (2008) Birth weight and risk of type 2 diabetes. A systematic review. JAMA 300: 2886–2897.
    1. Plagemann A, Harder T (2009) Re: “Birth weight and risk of type 2 diabetes in adults” [letter]. JAMA 301: 1540–1541.
    1. Bhargava SK, Sachdev HS, Fall CHD, Osmond C, Lakshmy R, et al. (2004) Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 350: 865–875.
    1. Lee CMY, Huxley RR, Wildman RP, Woodward M (2008) Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol 61: 646–653.
    1. Kilpeläinen TO, den Hoed M, Ong KK, Grøntved A, Brage S, et al. (2011) Obesity-susceptility loci have a limited influence on birth weight: a meta-analysis of up to 28,219 individuals. Am J Clin Nutr 93: 851–860.
    1. Hossain P, Kawar B, El Nahas M (2007) Obesity and diabetes in the developing world - a growing challenge. N Engl J Med 356: 213–215.
    1. Scully T (2012) Diabetes in numbers. Nature 485: S2–3.
    1. Freinkel N, Metzger BE (1979) Pregnancy as a tissue culture experience: the critical implications of maternal metabolism for fetal development. In: Pregnancy metabolism, diabetes, and the fetus. Ciba Foundation Symposium 63. Amsterdam: Excerpta Medica. pp 3–28.
    1. Freinkel N (1980) Of pregnancy and progeny. Diabetes 29: 1023–1035.
    1. Catalano P, Haughel-De Mouzon S (2011) Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol 204: 479–487.
    1. Jovanovic L, Pettitt DJ (2001) Gestational diabetes mellitus. JAMA 286: 2516–2518.
    1. The HAPO study collaborative research group (2008) Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 358: 1991–2002.
    1. Cedergren MI (2004) Maternal morbid obesity and the risk of adverse pregnancy outcome. Obstet Gynecol 103: 219–224.
    1. Sewell MF, Huston-Presley L, Super DM, Catalano P (2006) Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol 195: 1100–1003.
    1. Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, et al. (2005) Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med 352: 2477–2486.
    1. Landon MB, Spong CY, Thom E, Carpenter MW, Ramin SM, et al. (2009) A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med 361: 1339–1348.
    1. Pettitt DJ, Baird HR, Aleck KA, Bennett PH, Knowler WC (1983) Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med 308: 242–245.
    1. Silverman BL, Metzger BE, Cho NH, Loeb CA (1995) Impaired glucose tolerance in adolescents offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care 18: 611–617.
    1. Plagemann A, Harder T, Kohlhoff R, Rohde W, Dörner G (1997) Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int J Obes Relat Metab Disord 21: 451–456.
    1. Nelson SM, Matthews P, Poston L (2010) Maternal metabolism and obesity: modifiable determinants of pregnancy outcome. Hum Reprod Update 16: 255–275.
    1. Levin BE (2010) Developmental gene x environment interactions affecting systems regulating energy homeostasis and obesity. Front Neuroendocrinol 31: 270–283.
    1. Dörner G, Plagemann A (1994) Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res 26: 213–221.
    1. Plagemann A (2008) A matter of insulin: Developmental programming of body weight regulation. J Mat Fet Med 21: 143–148.
    1. Van Assche FA, Holemans K, Aerts L (2001) Long-term consequences for offspring of diabetes during pregnancy. Br Med Bull 60: 173–182.
    1. Van Assche FA, Devlieger R, Harder T, Plagemann A (2010) Mitogenic effect of insulin and developmental programming. Diabetologia 53: 1243.
    1. Holemans K, Aerts L, Van Assche FA (1991) Evidence for an insulin resistance in the adult offspring of pregnant streptozotocin-diabetic rats. Diabetologia 34: 81–85.
    1. Stockard CR (1921) Developmental rate and structural expression: an experimental study of twins, “double monsters” and single deformities, and the interaction among embryonic organs during their origin and development. Am J Anat 28: 115–263.
    1. Tzschentke B, Plagemann A (2006) Imprinting and critical periods in early development. World's Poult Sci J 62: 627–638.
    1. Plagemann A, Harder T, Dudenhausen JW (2010) Re: “Childhood obesity, other cardiovascular risk factors, and premature death” [letter]. N Engl J Med 362: 1840–1841.
    1. Harder T, Plagemann A, Harder A (2008) Birth weight and subsequent risk of childhood primary brain tumors: A meta-analysis. Am J Epidemiol 168: 366–373.
    1. Silva Idos S, De Stavola B (2008) McCormack V; Collaborative Group on Pre-Natal Risk Factors and Subsequent Risk of Breast Cancer (2008) Birth size and breast cancer risk: re-analysis of individual participant data from 32 studies. PLoS Med 5: e193.
    1. Ehemann C, Henly SJ, Ballard-Barbash R, Jacobs EJ, Schymura MJ, et al. (2012) Annual report to the nation on the status of cancer, 1975–2008, featuring cancers associated with excess weight and lack of sufficient physical activity. Cancer 118: 2338–2366.

Source: PubMed

3
Subskrybuj