Dose selection trial of metronomic oral vinorelbine monotherapy in patients with metastatic cancer: a hellenic cooperative oncology group clinical translational study

Evangelos Briasoulis, Gerasimos Aravantinos, George Kouvatseas, Periklis Pappas, Eirini Biziota, Ioannis Sainis, Thomas Makatsoris, Ioannis Varthalitis, Ioannis Xanthakis, Antonios Vassias, George Klouvas, Ioannis Boukovinas, George Fountzilas, Kostantinos N Syrigos, Haralambos Kalofonos, Epaminontas Samantas, Evangelos Briasoulis, Gerasimos Aravantinos, George Kouvatseas, Periklis Pappas, Eirini Biziota, Ioannis Sainis, Thomas Makatsoris, Ioannis Varthalitis, Ioannis Xanthakis, Antonios Vassias, George Klouvas, Ioannis Boukovinas, George Fountzilas, Kostantinos N Syrigos, Haralambos Kalofonos, Epaminontas Samantas

Abstract

Background: Metronomic chemotherapy is considered an anti-angiogenic therapy that involves chronic administration of low-dose chemotherapy at regular short intervals. We investigated the optimal metronomic dose of oral vinorelbine when given as monotherapy in patients with metastatic cancer.

Methods: Patients with recurrent metastatic breast (BC), prostate (PC) or non-small cell lung cancer (NSCLC) and adequate organ functions were randomly assigned to 30, 40 or 50 mg vinorelbine, taken orally three times a week. Treatment continued until disease progression, unacceptable toxicity, withdrawal of consent or maximum 24 months. Primary endpoint was time-to-treatment failure (TTF) and secondary were progression-free survival (PFS), toxicity, changes in blood concentrations of angiogenesis-associated biomarkers and pharmacokinetics.

Results: Seventy-three patients were enrolled. Four-month TTF rate did not differ between the three arms: 25.9% (11.1%-46.2% 95% Confidence Interval), 33.3% (15.6%-55.3%) and 18.2% (5.2%-40.3%) for the 30 mg, 40 mg and 50 mg arms (p-value = 0.56). Objective response was seen in 2 patients with NSCLC (treated at 30 and 50 mg respectively), one with BC (at 40 m g) and one with PC (at 50 mg) and lasted from 4 to 100 weeks, with maximum response duration achieved at 50 mg. Adverse events were mild and negligible and did not differ between the three arms. Blood levels of vinorelbine reached steady state from the second week of treatment and mean values for the 30, 40 and 50 mg were respectively 1.8 ng/ml (SD 1.10), 2.2 ng/ml (SD 1.87) and 2.6 ng/ml (SD 0.69). Low pre-treatment blood concentrations of FGF2 and IL8 predicted favorable response to therapy (p values 0.02 and 0.006, respectively), while high levels of TEK gene transcript predicted treatment resistance.

Conclusions: Considering the antitumor activity and response duration, the negligible toxicity of the highest dose investigated and the lack of drug accumulation over time, we suggest that 50 mg given three times a week is the optimal dose for metronomic oral vinorelbine. Further investigation of metronomic oral vinorelbine (MOVIN) at this dose is warranted in combination with conventional chemotherapy regimens and targeted therapies.

Trial registration: Clinicaltrials.gov NCT00278070.

Figures

Figure 1
Figure 1
Consort diagram describing the main characteristics of the present clinical study.
Figure 2
Figure 2
REMARK diagram for biomarker studies.
Figure 3
Figure 3
Objective tumor responses. Objective responses documented in a prostate cancer patient treated at 50 mg dose and a breast cancer patient treated at 40 mg dose.
Figure 4
Figure 4
Time to treatment failure probability curve.
Figure 5
Figure 5
Trough blood concentrations of vinorelbine over time. Scatter plots of serial trough concentrations of VLR and its active metabolite DVLR over time in a patient prostate cancer patient treated at 50 mg dose arm (A) and a breast cancer patient treated at 40 mg (B) and median (plus SEM) values of steady state levels of all patients treated at the three dose arms (C).
Figure 6
Figure 6
Transcript levels of 84 angiogenesis-related genes graphed against treatment outcome Scatter plots comparing circulating pretreatment gene transcript levels of responders versus non-responders. The graphs plot the log10 of normalized gene expression levels between the two conditions, responders (x-axis) and non-responders (y-axis). Dots outside the area between the two lines indicate fold differences larger than a threshold of 2. The red dots in the upper left corner readily identify up-regulated genes, and the green dots in the lower right corner readily identify down regulated genes.

References

    1. Kosmidis PA, Fountzilas G, Eleftheraki AG, Kalofonos HP, Pentheroudakis G, Skarlos D, Dimopoulos MA, Bafaloukos D, Pectasides D, Samantas E. et al.Paclitaxel and gemcitabine versus paclitaxel and vinorelbine in patients with advanced non-small-cell lung cancer. A phase III study of the hellenic cooperative oncology group (HeCOG) Ann Oncol. 2011;22(4):827–834. doi: 10.1093/annonc/mdq445.
    1. Saltz LB. Progress in cancer care: the hope, the hype, and the gap between reality and perception. J Clin Oncol. 2008;26(31):5020–5021. doi: 10.1200/JCO.2008.17.6198.
    1. Fojo T, Parkinson DR. Biologically targeted cancer therapy and marginal benefits: are we making too much of too little or are we achieving too little by giving too much? Clin Cancer Res. 2010;16(24):5972–5980. doi: 10.1158/1078-0432.CCR-10-1277.
    1. Richards L. Targeted therapies: disappointing outcomes for anti-VEGF therapy. Nat Rev Clin Oncol. 2011;8(4):194.
    1. Gebbia V, Serretta V, Borsellino N, Valerio MR. Salvage therapy with oral metronomic cyclophosphamide and methotrexate for castration-refractory metastatic adenocarcinoma of the prostate resistant to docetaxel. Urology. 2011;78(5):1125–1130. doi: 10.1016/j.urology.2011.08.010.
    1. Kerbel RS, Klement G, Pritchard KI, Kamen B. Continuous low-dose anti-angiogenic/ metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann Oncol. 2002;13(1):12–15. doi: 10.1093/annonc/mdf093.
    1. Mir O, Domont J, Cioffi A, Bonvalot S, Boulet B, Le Pechoux C, Terrier P, Spielmann M, Le Cesne A. Feasibility of metronomic oral cyclophosphamide plus prednisolone in elderly patients with inoperable or metastatic soft tissue sarcoma. Eur J Cancer. 2011;47(4):515–519. doi: 10.1016/j.ejca.2010.11.025.
    1. Penel N, Clisant S, Dansin E, Desauw C, Degardin M, Mortier L, Vanhuyse M, Bonodeau F, Fournier C, Cazin JL. et al.Megestrol acetate versus metronomic cyclophosphamide in patients having exhausted all effective therapies under standard care. Br J Cancer. 2010;102(8):1207–1212. doi: 10.1038/sj.bjc.6605623.
    1. Wong NS, Buckman RA, Clemons M, Verma S, Dent S, Trudeau ME, Roche K, Ebos J, Kerbel R, Deboer GE. et al.Phase I/II trial of metronomic chemotherapy with daily dalteparin and cyclophosphamide, twice-weekly methotrexate, and daily prednisone as therapy for metastatic breast cancer using vascular endothelial growth factor and soluble vascular endothelial growth factor receptor levels as markers of response. J Clin Oncol. 2010;28(5):723–730. doi: 10.1200/JCO.2009.24.0143.
    1. Hahnfeldt P, Folkman J, Hlatky L. Minimizing long-term tumor burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J Theor Biol. 2003;220(4):545–554. doi: 10.1006/jtbi.2003.3162.
    1. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004;4:423–436. doi: 10.1038/nrc1369.
    1. Yancopoulos GD. Clinical application of therapies targeting VEGF. Cell. 2010;143(1):13–16. doi: 10.1016/j.cell.2010.09.028.
    1. Tejpar S, Prenen H, Mazzone M. Overcoming resistance to antiangiogenic therapies. Oncologist. 2012;17(8):1039–1050. doi: 10.1634/theoncologist.2012-0068.
    1. Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN, Kahnoski R, Futreal PA, Furge KA, Teh BT. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 2010;70(3):1063–1071. doi: 10.1158/0008-5472.CAN-09-3965.
    1. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8(8):579–591. doi: 10.1038/nrc2403.
    1. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603. doi: 10.1038/nrc2442.
    1. Shaked Y, Kerbel RS. Antiangiogenic strategies on defense: on the possibility of blocking rebounds by the tumor vasculature after chemotherapy. Cancer Res. 2007;67(15):7055–7058. doi: 10.1158/0008-5472.CAN-07-0905.
    1. Frei E 3rd, Canellos GP. Dose: a critical factor in cancer chemotherapy. Am J Med. 1980;69(4):585–594. doi: 10.1016/0002-9343(80)90472-6.
    1. Pasquier E, Kavallaris M, Andre N. Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol. 2010;7(8):455–465. doi: 10.1038/nrclinonc.2010.82.
    1. Chen CA, Ho CM, Chang MC, Sun WZ, Chen YL, Chiang YC, Syu MH, Hsieh CY, Cheng WF. Metronomic chemotherapy enhances antitumor effects of cancer vaccine by depleting regulatory T lymphocytes and inhibiting tumor angiogenesis. Mol Ther. 2010;18(6):1233–1243. doi: 10.1038/mt.2010.34.
    1. Andre N, Padovani L, Pasquier E. Metronomic scheduling of anticancer treatment: the next generation of multitarget therapy? Future Oncol. 2011;7(3):385–394. doi: 10.2217/fon.11.11.
    1. Briasoulis E, Pappas P, Puozzo C, Tolis C, Fountzilas G, Dafni U, Marselos M, Pavlidis N. Dose-ranging study of metronomic oral vinorelbine in patients with advanced refractory cancer. Clin Cancer Res. 2009;15(20):6454–6461. doi: 10.1158/1078-0432.CCR-09-0970.
    1. Skipper HE, Schabel FM Jr, Mellett LB, Montgomery JA, Wilkoff LJ, Lloyd HH, Brockman RW. Implications of biochemical, cytokinetic, pharmacologic, and toxicologic relationships in the design of optimal therapeutic schedules. Cancer Chemother Rep. 1970;54(6):431–450.
    1. DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643–8653. doi: 10.1158/0008-5472.CAN-07-6611.
    1. Maraveyas A, Lam T, Hetherington JW, Greenman J. Can a rational design for metronomic chemotherapy dosing be devised? Br J Cancer. 2005;92(8):1588–1590. doi: 10.1038/sj.bjc.6602474.
    1. Shaked Y, Emmenegger U, Man S, Cervi D, Bertolini F, Ben-David Y, Kerbel RS. Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood. 2005;106(9):3058–3061. doi: 10.1182/blood-2005-04-1422.
    1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC. et al.New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, national cancer institute of the United States, national cancer institute of Canada. J Natl Cancer Inst. 2000;92(3):205–216. doi: 10.1093/jnci/92.3.205.
    1. Bubley GJ, Carducci M, Dahut W, Dawson N, Daliani D, Eisenberger M, Figg WD, Freidlin B, Halabi S, Hudes G. et al.Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer: recommendations from the prostate-specific antigen working group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1999;17(11):3461–3467.
    1. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies (REMARK) J Natl Cancer Inst. 2005;97(16):1180–1184. doi: 10.1093/jnci/dji237.
    1. Pectasides D, Papaxoinis G, Kotoula V, Fountzilas H, Korantzis I, Koutras A, Dimopoulos AM, Papakostas P, Aravantinos G, Varthalitis I. et al.Expression of angiogenic markers in the peripheral blood of docetaxel-treated advanced breast cancer patients: A Hellenic Cooperative Oncology Group (HeCOG) study. Oncol Rep. 2012;27(1):216–224.
    1. Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−DeltaDeltaCt) Method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262.
    1. Van Heugen JC, De Graeve J, Zorza G, Puozzo C. New sensitive liquid chromatography method coupled with tandem mass spectrometric detection for the clinical analysis of vinorelbine and its metabolites in blood, plasma, urine and faeces. J Chromatogr A. 2001;926(1):11–20. doi: 10.1016/S0021-9673(01)00993-1.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. New York, NY: Academic Press; 1977.
    1. Thall PF, Cook JD. Dose-finding based on efficacy-toxicity trade-offs. Biometrics. 2004;60(3):684–693. doi: 10.1111/j.0006-341X.2004.00218.x.
    1. Verheul HM, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer. 2007;7(6):475–485. doi: 10.1038/nrc2152.
    1. Eskens FA, Verweij J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer. 2006;42(18):3127–3139. doi: 10.1016/j.ejca.2006.09.015.
    1. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6(4):273–286. doi: 10.1038/nrd2115.
    1. Pappas P, Biziota I, Marselos M, Brasoulis E. Evaluation of antiproliferative and molecular effects of vinorelbine and its active metabolite 4-O-deacetyl-vinorelbine on human endothelial cells in an in vitro simulation model of metronomic chemotherapy. Eur J Cancer. 2008;6(Supplement 9s):138–139. Abstract 533.
    1. Hamaguchi I, Huang XL, Takakura N, Tada J, Yamaguchi Y, Kodama H, Suda T. In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta-gonad-mesonephros region. Blood. 1999;93(5):1549–1556.
    1. Dales JP, Garcia S, Bonnier P, Duffaud F, Meunier-Carpentier S, Andrac-Meyer L, Lavaut MN, Allasia C, Charpin C. Tie2/Tek expression in breast carcinoma: correlations of immunohistochemical assays and long-term follow-up in a series of 909 patients. Int J Oncol. 2003;22(2):391–397.
    1. Dumont DJ, Yamaguchi TP, Conlon RA, Rossant J, Breitman ML. tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene. 1992;7(8):1471–1480.
    1. Laquente B, Vinals F, Germa JR. Metronomic chemotherapy: an antiangiogenic scheduling. Clin Transl Oncol. 2007;9(2):93–98. doi: 10.1007/s12094-007-0018-3.
    1. Gasparini G. Metronomic scheduling: the future of chemotherapy? Lancet Oncol. 2001;2(12):733–740. doi: 10.1016/S1470-2045(01)00587-3.

Source: PubMed

3
Subskrybuj