Metabolic syndrome in patients with type 2 diabetes and atherosclerotic cardiovascular disease: a post hoc analyses of the EMPA-REG OUTCOME trial

João Pedro Ferreira, Subodh Verma, David Fitchett, Anne Pernille Ofstad, Sabine Lauer, Isabella Zwiener, Jyothis George, Christoph Wanner, Bernard Zinman, Silvio E Inzucchi, João Pedro Ferreira, Subodh Verma, David Fitchett, Anne Pernille Ofstad, Sabine Lauer, Isabella Zwiener, Jyothis George, Christoph Wanner, Bernard Zinman, Silvio E Inzucchi

Abstract

Background: Patients with type 2 diabetes (T2D) and metabolic syndrome (MetS) are at greater cardiovascular risk than those with T2D without MetS. In the current report we aim to study the characteristics, cardio-renal outcomes and the effect of empagliflozin in patients with MetS enrolled in the EMPA-REG OUTCOME trial.

Methods: A total of 7020 patients with T2D and atherosclerotic cardiovascular disease were treated with empagliflozin (10 mg or 25 mg) or placebo for a median of 3.1 years. The World Health Organization MetS criteria could be determined for 6985 (99.5%) patients. We assessed the association between baseline MetS and multiple cardio-renal endpoints using Cox regression models, and we studied the change in the individual component over time of the MetS using mixed effect models.

Results: MetS at baseline was present in 5740 (82%) patients; these were more often white and had more often albuminuria and heart failure, had lower eGFR and HDL-cholesterol, and higher blood pressure, body mass index, waist circumference, and triglycerides. In the placebo group, patients with MetS had a higher risk of all outcomes including cardiovascular death: HR = 1.73 (95% CI 1.01-2.98), heart failure hospitalization: HR = 2.64 (95% CI 1.22, 5.72), and new or worsening nephropathy: HR = 3.11 (95% CI 2.17-4.46). The beneficial effect of empagliflozin was consistent on all cardio-renal outcomes regardless of presence of MetS.

Conclusions: A large proportion of the EMPA-REG OUTCOME population fulfills the criteria for MetS. Those with MetS had increased risk of adverse cardio-renal outcomes. Compared with placebo, empagliflozin improved cardio-renal outcomes in patients with and without MetS. Trial registration Clinical Trial Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT01131676.

Keywords: Cardiovascular disease; Empagliflozin; Metabolic syndrome; Treatment effect; Type 2 diabetes mellitus.

Conflict of interest statement

J.P.F. has received travelling fees from Behringer Ingelheim. S.V. is President of the Canadian Medical and Surgical Knowledge Translation Research Group, a federally incorporated not-for-profit physician organization; holds a Tier 1 Canada Research Chair in Cardiovascular Surgery; S.V. has also received grants and personal fees for speaker honoraria and advisory board participation from AstraZeneca, Bayer, Boehringer Ingelheim, Janssen, and Merck. He has received grants and personal fees for advisory board participation from Amgen, grants from Bristol-Myers Squibb, personal fees for speaker honoraria and advisory board participation from Eli Lilly, Novo Nordisk and Sanofi, and personal fees for speaker honoraria from EOCI Pharmacomm Ltd, Novartis, Sun Pharmaceuticals and Toronto Knowledge Translation Working Group. D.H.F. has received honoraria from Amgen, AstraZeneca, BI, Eli Lilly and Company, Merck & Co., and Sanofi. C.W. has received honoraria for consultancy and lecturing from AstraZeneca, Bayer, BI, GlaxoSmithKline, Eli Lilly and Company, Merck Sharp & Dome, Mundipharma, Sanofi Genzyme, and Takeda. B.Z. has received research grants awarded to his institution from BI, AstraZeneca and Novo Nordisk, and honoraria from Janssen, Sanofi, Eli Lilly and Company, BI, Novo Nordisk and Merck Sharp & Dome. S.E.I. has consulted and/or served on Clinical Trial Steering/Executive/Publications Committees for Boehringer Ingelheim (BI), AstraZeneca, Novo Nordisk, Sanofi/Lexicon Pharmaceuticals, Merck and Abbott. A.P.O, I.Z. and J.T.G. are employees of Boehringer Ingelheim. S.L. has received honoraria for consultancy from BI and F. Hoffmann La Roche.

Figures

Fig. 1
Fig. 1
Incidence rates of outcomes in the placebo group in those with versus those without metabolic syndrome at baseline. *Excluding fatal stroke. CV cardiovascular, HHF hospitalization for HF, PY patient years
Fig. 2
Fig. 2
Association of metabolic syndrome at baseline and outcomes in the placebo group (patients without metabolic syndrome is reference group). *Excluding fatal stroke. Cox models include terms for baseline age, sex, HbA1c, eGFR, geographical region, treatment, MetS at baseline and treatment*MetS at baseline interaction. CV cardiovascular, HHF hospitalization for heart failure, MetS metabolic syndrome
Fig. 3
Fig. 3
Consistent treatment effect of empagliflozin vs. placebo in those with and without metabolic syndrome at baseline. *Excluding fatal stroke. Cox models include terms for baseline age, sex, HbA1c, eGFR, geographical region, treatment, MetS at baseline and treatment*MetS at baseline interaction. p-values for treatment-by-subgroup interaction were obtained from tests of homogeneity of treatment group differences among subgroups with no adjustment for multiple testing. CV cardiovascular, HHF hospitalization for heart failure, MetS metabolic syndrome, py patient-years
Fig. 4
Fig. 4
Change from baseline in metabolic outcomes in those with (left panel) vs without (right panel) metabolic syndrome at baseline: a HbA1c, b SBP, c weight, d triglycerides, e HDL, f log(UACR), g waist circumference. Results from MMRM models as described in "Materials and methods" section. HbA1c glycated hemoglobin, HDL-C high-density lipoprotein, SBP systolic blood pressure, UACR urine albumin creatinine ratio
Fig. 4
Fig. 4
Change from baseline in metabolic outcomes in those with (left panel) vs without (right panel) metabolic syndrome at baseline: a HbA1c, b SBP, c weight, d triglycerides, e HDL, f log(UACR), g waist circumference. Results from MMRM models as described in "Materials and methods" section. HbA1c glycated hemoglobin, HDL-C high-density lipoprotein, SBP systolic blood pressure, UACR urine albumin creatinine ratio

References

    1. Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res. 2017;183:57–70. doi: 10.1016/j.trsl.2017.01.001.
    1. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>;2-S.
    1. Rawshani A, Franzen S, Sattar N, Eliasson B, Svensson AM, Zethelius B, Miftaraj M, McGuire DK, Rosengren A, Gudbjornsdottir S. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018;379(7):633–44. doi: 10.1056/NEJMoa1800256.
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. doi: 10.1056/NEJMoa1504720.
    1. Ferreira JP, Fitchett D, Ofstad AP, Kraus BJ, Wanner C, Zwiener I, Zinman B, Lauer S, George JT, Rossignol P, Zannad F. Empagliflozin for patients with presumed resistant hypertension: a post hoc analysis of the EMPA-REG OUTCOME Trial. Am J Hypertens. 2020 doi: 10.1093/ajh/hpaa073.
    1. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, Johansen OE. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(12):1180–93. doi: 10.1111/dom.12572.
    1. Wanner C, Lachin JM, Inzucchi SE, Fitchett D, Mattheus M, George J, Woerle HJ, Broedl UC, von Eynatten M, Zinman B. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation. 2018;137(2):119–29. doi: 10.1161/CIRCULATIONAHA.117.028268.
    1. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34. doi: 10.1056/NEJMoa1515920.
    1. Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med. 2006;119(10):812–9. doi: 10.1016/j.amjmed.2006.02.031.
    1. Ipadeola A, Adeleye JO. THE metabolic syndrome and accurate cardiovascular risk prediction in persons with type 2 diabetes mellitus. Diabetes Metab Syndr. 2016;10(1):7–12. doi: 10.1016/j.dsx.2015.08.011.
    1. Song SH, Hardisty CA. Diagnosing metabolic syndrome in type 2 diabetes: does it matter? QJM. 2008;101(6):487–91. doi: 10.1093/qjmed/hcn034.
    1. Scott R, O’Brien R, Fulcher G, Pardy C, D’Emden M, Tse D, Taskinen MR, Ehnholm C, Keech A. Effects of fenofibrate treatment on cardiovascular disease risk in 9795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32(3):493–8. doi: 10.2337/dc08-1543.
    1. Chuang SM, Shih HM, Chien MN, Liu SC, Wang CH, Lee CC. Risk factors in metabolic syndrome predict the progression of diabetic nephropathy in patients with type 2 diabetes. Diabetes Res Clin Pract. 2019;153:6–13. doi: 10.1016/j.diabres.2019.04.022.
    1. Chen K, Lindsey JB, Khera A, De Lemos JA, Ayers CR, Goyal A, Vega GL, Murphy SA, Grundy SM, McGuire DK. Independent associations between metabolic syndrome, diabetes mellitus and atherosclerosis: observations from the Dallas Heart Study. Diab Vasc Dis Res. 2008;5(2):96–101. doi: 10.3132/dvdr.2008.016.
    1. Li C, Ford ES, McGuire LC, Mokdad AH. Association of metabolic syndrome and insulin resistance with congestive heart failure: findings from the Third National Health and Nutrition Examination Survey. J Epidemiol Community Health. 2007;61(1):67–73. doi: 10.1136/jech.2006.048173.
    1. Wang J, Sarnola K, Ruotsalainen S, Moilanen L, Lepisto P, Laakso M, Kuusisto J. The metabolic syndrome predicts incident congestive heart failure: a 20-year follow-up study of elderly Finns. Atherosclerosis. 2010;210(1):237–42. doi: 10.1016/j.atherosclerosis.2009.10.042.
    1. Ingelsson E, Arnlov J, Lind L, Sundstrom J. Metabolic syndrome and risk for heart failure in middle-aged men. Heart. 2006;92(10):1409–1413. doi: 10.1136/hrt.2006.089011.
    1. Adingupu DD, Göpel SO, Grönros J, Behrendt M, Sotak M, Miliotis T, Dahlqvist U, Gan LM, Jönsson-Rylander AC. SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob(-/-) mice. Cardiovasc Diabetol. 2019;18(1):16. doi: 10.1186/s12933-019-0820-6.
    1. Sun X, Han F, Lu Q, Li X, Ren D, Zhang J, Han Y, Xiang YK, Li J. Empagliflozin ameliorates obesity-related cardiac dysfunction by regulating sestrin2-mediated AMPK-mTOR signaling and redox homeostasis in high-fat diet-induced obese mice. Diabetes. 2020;69(6):1292–305.
    1. Januzzi J, Ferreira JP, Bohm M, Kaul S, Wanner C, Brueckmann M, Petrie MC, Ofstad AP, Zeller C, George J, Fitchett D, Zannad F. Empagliflozin reduces the risk of a broad spectrum of heart failure outcomes regardless of heart failure status at baseline. Eur J Heart Fail. 2019;21(3):386–8. doi: 10.1002/ejhf.1419.
    1. Fitchett D, Inzucchi SE, Cannon CP, McGuire DK, Scirica BM, Johansen OE, Sambevski S, Kaspers S, Pfarr E, George JT, Zinman B. Empagliflozin reduced mortality and hospitalization for heart failure across the spectrum of cardiovascular risk in the EMPA-REG OUTCOME trial. Circulation. 2019;139(11):1384–95. doi: 10.1161/CIRCULATIONAHA.118.037778.
    1. Park SH, Farooq MA, Gaertner S, Bruckert C, Qureshi AW, Lee HH, Benrahla D, Pollet B, Stephan D, Ohlmann P, Lessinger JM, Mayoux E, Auger C, Morel O, Schini-Kerth VB. Empagliflozin improved systolic blood pressure, endothelial dysfunction and heart remodeling in the metabolic syndrome ZSF1 rat. Cardiovasc Diabetol. 2020;19(1):19. doi: 10.1186/s12933-020-00997-7.
    1. Zannad F, Ferreira JP, Pocock SJ, Zeller C, Anker SD, Butler J, Filippatos G, Hauske SJ, Brueckmann M, Pfarr E, Schnee J, Wanner C, Packer M. Cardiac and kidney benefits of empagliflozin in heart failure across the spectrum of kidney function: insights from the EMPEROR-reduced trial. Circulation. 2020 doi: 10.1161/CIRCULATIONAHA.120.051685.
    1. Castellana M, Procino F, Sardone R, Trimboli P, Giannelli G. Generalizability of sodium-glucose co-transporter-2 inhibitors cardiovascular outcome trials to the type 2 diabetes population: a systematic review and meta-analysis. Cardiovasc Diabetol. 2020;19(1):87. doi: 10.1186/s12933-020-01067-8.
    1. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, Zuo F, Quan A, Farkouh ME, Fitchett DH, Goodman SG, Goldenberg RM, Al-Omran M, Gilbert RE, Bhatt DL, Leiter LA, Jüni P, Zinman B, Connelly KA. Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation. 2019;140(21):1693–702. doi: 10.1161/CIRCULATIONAHA.119.042375.

Source: PubMed

3
Subskrybuj