Circulating tumor DNA predicts efficacy of a dual AKT/p70S6K inhibitor (LY2780301) plus paclitaxel in metastatic breast cancer: plasma analysis of the TAKTIC phase IB/II study

Renaud Sabatier, Cécile Vicier, Séverine Garnier, Arnaud Guille, Nadine Carbuccia, Nicolas Isambert, Florence Dalenc, Marie Robert, Christelle Levy, Jihane Pakradouni, José Adelaïde, Max Chaffanet, Patrick Sfumato, Emilie Mamessier, François Bertucci, Anthony Goncalves, Renaud Sabatier, Cécile Vicier, Séverine Garnier, Arnaud Guille, Nadine Carbuccia, Nicolas Isambert, Florence Dalenc, Marie Robert, Christelle Levy, Jihane Pakradouni, José Adelaïde, Max Chaffanet, Patrick Sfumato, Emilie Mamessier, François Bertucci, Anthony Goncalves

Abstract

The phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is frequently activated in HER2-negative breast cancer and may play a role in taxane resistance. The phase IB/II TAKTIC trial (NCT01980277) has shown that combining a dual AKT and p70 ribosomal protein S6 kinase (p70S6K) inhibitor (LY2780301) taken orally with weekly paclitaxel in HER2-negative advanced breast cancer is feasible, with preliminary evidence of efficacy. We wanted to explore whether circulating tumor DNA (ctDNA) may be a surrogate marker of treatment efficacy in this setting. Serial plasma samples were collected and cell-free DNA was sequenced using low-coverage whole-genome sequencing, and analysis was completed with droplet digital polymerase chain reaction (PCR) for some patients with driver mutations. Baseline tumor fraction (TF) and TF after 7 weeks on treatment were compared to progression-free survival (PFS) and the overall response rate. We also explored circulating copy number alterations associated with treatment failure. Of the 51 patients enrolled in the TAKTIC trial, at least one plasma sample was available for 44 cases (96 timepoints). All patients with tumor TP53, PI3KCA, or AKT1 mutations harbored at least one of these alterations in plasma. TF at inclusion was correlated with PFS (6m-PFS was 92% for ctDNAneg patients vs 68% for ctDNApos cases; hazard ratio [HR] = 3.45, 95% confidence interval [CI] [1.34-8.90], P = 0.007). ctDNA status at week 7 was not correlated with prognosis. Even though most circulating copy number alterations were conserved at disease progression, some genomic regions of interest were altered in post-progression samples. In conclusion, ctDNA detection at baseline was associated with shorter PFS in patients included in the TAKTIC trial. Plasma-based copy number analysis may help to identify alterations involved in resistance to treatment.

Keywords: AKT; breast cancer; circulating tumor DNA; copy number alterations; low-coverage whole genome sequencing; survival.

Conflict of interest statement

A.G. declares nonfinancial support from Novartis. R.S. declares research grants from EISAI and AstraZeneca; advisory board for Roche, GSK, and Novartis; nonfinancial support (travel, accommodation and meeting registration fees) was from Pfizer, Roche, GSK, BMS, and AstraZeneca. The other authors declare no conflicts of interest.

© 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Figures

Fig. 1
Fig. 1
Study flow diagram detailing the patients included in this ancillary analysis and the number of samples evaluated at each timepoint.
Fig. 2
Fig. 2
Kaplan–Meier curves for progression‐free survival (PFS) according to baseline circulating tumor fraction (TF). Patients with TF > 0 (red line) display a worse PFS than patients with TF = 0 (blue line). Wald test P‐value.
Fig. 3
Fig. 3
Tumor fraction dynamics under treatment. Data for patients with at least baseline and End of Treatment (EoT) ctDNA samples available are represented (N = 19). Blue: responders to paclitaxel‐LY2780301 according to RECIST 1.1 criteria; red: nonresponders to paclitaxel‐LY2780301. Triangles represent cases with tumor progression at time of EoT visit; circles represent cases without tumor progression at time of EoT visit.
Fig. 4
Fig. 4
Correlation of baseline tumor and plasma CNA profiles in patients with tumor fraction >0. Analysis was performed using discrete values. Each row/line represents a baseline tumor sample (analyzed with aCGH) or a baseline plasma sample (analyzed with LC‐WGS). Positive correlations are displayed in blue and negative correlations in red, with 1 (dark blue) as the highest correlation. Circles size and color intensity are proportional to the correlation coefficient.

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30. 10.3322/caac.21590
    1. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69:363–85. 10.3322/caac.21565
    1. Miller TW, Rexer BN, Garrett JT, Arteaga CL. Mutations in the phosphatidylinositol 3‐kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res. 2011;13:224. 10.1186/bcr3039
    1. Kalinsky K, Jacks LM, Heguy A, Patil S, Drobnjak M, Bhanot UK, et al. PIK3CA mutation associates with improved outcome in breast cancer. Clin Cancer Res. 2009;15:5049–59. 10.1158/1078-0432.CCR-09-0632
    1. Miller TW, Hennessy BT, González‐Angulo AM, Fox EM, Mills GB, Chen H, et al. Hyperactivation of phosphatidylinositol‐3 kinase promotes escape from hormone dependence in estrogen receptor‐positive human breast cancer. J Clin Invest. 2010;120:2406–13. 10.1172/JCI41680
    1. Robert NJ, Diéras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON, et al. RIBBON‐1: randomized, double‐blind, placebo‐controlled, phase III trial of chemotherapy with or without bevacizumab for first‐line treatment of human epidermal growth factor receptor 2‐negative, locally recurrent or metastatic breast cancer. J Clin Oncol. 2011;29:1252–60. 10.1200/JCO.2010.28.0982
    1. André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al. Alpelisib for PIK3CA‐mutated, hormone receptor‐positive advanced breast cancer. N Engl J Med. 2019;380:1929–40. 10.1056/NEJMoa1813904
    1. Turner NC, Alarcón E, Armstrong AC, Philco M, López Chuken YA, Sablin M‐P, et al. BEECH: a dose‐finding run‐in followed by a randomised phase 2 study assessing the efficacy of AKT inhibitor capivasertib (AZD5363) combined with paclitaxel in patients with oestrogen receptor‐positive advanced or metastatic breast cancer, and in a PIK3CA mutant sub‐population. Ann Oncol. 2019;30:774–80. 10.1093/annonc/mdz086
    1. Azaro A, Rodon J, Calles A, Braña I, Hidalgo M, Lopez‐Casas PP, et al. A first‐in‐human phase I trial of LY2780301, a dual p70 S6 kinase and Akt Inhibitor, in patients with advanced or metastatic cancer. Invest New Drugs. 2015;33:710–9. 10.1007/s10637-015-0241-7
    1. Angevin E, Cassier PA, Italiano A, Gonçalves A, Gazzah A, Terret C, et al. Safety, tolerability and antitumour activity of LY2780301 (p70S6K/AKT inhibitor) in combination with gemcitabine in molecularly selected patients with advanced or metastatic cancer: a phase IB dose escalation study. Eur J Cancer. 2017;83:194–202. 10.1016/j.ejca.2017.06.036
    1. Vicier C, Sfumato P, Isambert N, Dalenc F, Robert M, Levy C, et al. TAKTIC: a prospective, multicentre, uncontrolled, phase IB/II study of LY2780301, a p70S6K/AKT inhibitor, in combination with weekly paclitaxel in HER2‐negative advanced breast cancer patients. Eur J Cancer. 2021;159:205–14. 10.1016/j.ejca.2021.09.040
    1. Oliveira M, Saura C, Nuciforo P, Calvo I, Andersen J, Passos‐Coelho JL, et al. FAIRLANE, a double‐blind placebo‐controlled randomized phase II trial of neoadjuvant ipatasertib plus paclitaxel for early triple‐negative breast cancer. Ann Oncol. 2019;30:1289–97. 10.1093/annonc/mdz177
    1. Kim S‐B, Dent R, Im S‐A, Espié M, Blau S, Tan AR, et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first‐line therapy for metastatic triple‐negative breast cancer (LOTUS): a multicentre, randomised, double‐blind, placebo‐controlled, phase 2 trial. Lancet Oncol. 2017;18:1360–72. 10.1016/S1470-2045(17)30450-3
    1. Schmid P, Abraham J, Chan S, Wheatley D, Brunt AM, Nemsadze G, et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first‐line therapy for metastatic triple‐negative breast cancer: the PAKT trial. J Clin Oncol. 2020;38:423–33. 10.1200/JCO.19.00368
    1. Jones RH, Casbard A, Carucci M, Cox C, Butler R, Alchami F, et al. Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor‐positive breast cancer (FAKTION): a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2020;21:345–57. 10.1016/S1470-2045(19)30817-4
    1. Dawson S‐J, Tsui DWY, Murtaza M, Biggs H, Rueda OM, Chin S‐F, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368:1199–209. 10.1056/NEJMoa1213261
    1. Murtaza M, Dawson S‐J, Tsui DWY, Gale D, Forshew T, Piskorz AM, et al. Non‐invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497:108–12. 10.1038/nature12065
    1. Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54. 10.1038/nm.3519
    1. Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez‐Crapez E, Rolet F, et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med. 2014;20:430–5. 10.1038/nm.3511
    1. Schwaederle M, Husain H, Fanta PT, Piccioni DE, Kesari S, Schwab RB, et al. Detection rate of actionable mutations in diverse cancers using a biopsy‐free (blood) circulating tumor cell DNA assay. Oncotarget. 2016;7:9707–17. 10.18632/oncotarget.7110
    1. Juric D, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo H, et al. Abstract GS3‐08: Alpelisib + fulvestrant for advanced breast cancer: subgroup analyses from the phase III SOLAR‐1 trial. General Session Abstracts, American Association for Cancer Research. Cancer Res. 2019;79:GS3‐08. 10.1158/1538-7445.SABCS18-GS3-08.
    1. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci USA. 2007;104:20007–12. 10.1073/pnas.0710052104
    1. Bertucci F, Gonçalves A, Guille A, Adelaïde J, Garnier S, Carbuccia N, et al. Prospective high‐throughput genome profiling of advanced cancers: results of the PERMED‐01 clinical trial. Genome Med. 2021;13:87. 10.1186/s13073-021-00897-9
    1. Garcia‐Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med. 2015;7:302ra133. 10.1126/scitranslmed.aab0021
    1. Schwartz LH, Litière S, de Vries E, Ford R, Gwyther S, Mandrekar S, et al. RECIST 1.1 – update and clarification: from the RECIST committee. Eur J Cancer. 2016;62:132–7. 10.1016/j.ejca.2016.03.081
    1. McShane LM, Hayes DF. Publication of tumor marker research results: the necessity for complete and transparent reporting. J Clin Oncol. 2012;30:4223–32. 10.1200/JCO.2012.42.6858
    1. Dent R, Oliveira M, Isakoff SJ, Im S‐A, Espié M, Blau S, et al. Final results of the double‐blind placebo‐controlled randomized phase 2 LOTUS trial of first‐line ipatasertib plus paclitaxel for inoperable locally advanced/metastatic triple‐negative breast cancer. Breast Cancer Res Treat. 2021;189:377–86. 10.1007/s10549-021-06143-5
    1. Franczak C, Filhine‐Tresarrieu P, Gilson P, Merlin J‐L, Au L, Harlé A. Technical considerations for circulating tumor DNA detection in oncology. Expert Rev Mol Diagn. 2019;19:121–35. 10.1080/14737159.2019.1568873
    1. Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, et al. Direct detection of early‐stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9:eaan2415. 10.1126/scitranslmed.aan2415
    1. Baird RD, van Rossum AG, Oliveira M, Beelen KJ, Gao M, Schrier M, et al. POSEIDON phase 1b results: safety, efficacy and ctDNA response of taselisib combined with tamoxifen in hormone receptor positive metastatic breast cancer patients. Clin Cancer Res. 2019;25:6598–605. 10.1158/1078-0432.CCR-19-0508
    1. Alix‐Panabières C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021;11:858–73. 10.1158/-20-1311
    1. Schwarz RF, Ng CKY, Cooke SL, Newman S, Temple J, Piskorz AM, et al. Spatial and temporal heterogeneity in high‐grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 2015;12:e1001789. 10.1371/journal.pmed.1001789
    1. Murtaza M, Dawson S‐J, Pogrebniak K, Rueda OM, Provenzano E, Grant J, et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat Commun. 2015;6:8760. 10.1038/ncomms9760
    1. Jamal‐Hanjani M, Wilson GA, Horswell S, Mitter R, Sakarya O, Constantin T, et al. Detection of ubiquitous and heterogeneous mutations in cell‐free DNA from patients with early‐stage non‐small‐cell lung cancer. Ann Oncol. 2016;27:862–7. 10.1093/annonc/mdw037
    1. Kingston B, Cutts RJ, Bye H, Beaney M, Walsh‐Crestani G, Hrebien S, et al. Genomic profile of advanced breast cancer in circulating tumour DNA. Nat Commun. 2021;12:2423. 10.1038/s41467-021-22605-2
    1. Baselga J, Im S‐A, Iwata H, Cortés J, De Laurentiis M, Jiang Z, et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor‐positive, HER2‐negative, advanced breast cancer (BELLE‐2): a randomised, double‐blind, placebo‐controlled, phase 3 trial. Lancet Oncol. 2017;18:904–16. 10.1016/S1470-2045(17)30376-5
    1. Hrebien S, Citi V, Garcia‐Murillas I, Cutts R, Fenwick K, Kozarewa I, et al. Early ctDNA dynamics as a surrogate for progression free survival in advanced breast cancer in the BEECH trial. Ann Oncol. 2019;30:945–52. 10.1093/annonc/mdz085
    1. Wongchenko MJ, Kim S‐B, Saura C, Oliveira M, Lipson D, Kennedy M, et al. Circulating tumor DNA and biomarker analyses from the LOTUS randomized trial of first‐line ipatasertib and paclitaxel for metastatic triple‐negative breast cancer. JCO Precis Oncol. 2020;4:1012–24. 10.1200/PO.19.00396
    1. Velimirovic M, Juric D, Niemierko A, Spring L, Vidula N, Wander SA, et al. Rising circulating tumor DNA as a molecular biomarker of early disease progression in metastatic breast cancer. JCO Precis Oncol. 2020;4:1246–62. 10.1200/PO.20.00117.
    1. Garcia‐Murillas I, Chopra N, Comino‐Méndez I, Beaney M, Tovey H, Cutts RJ, et al. Assessment of molecular relapse detection in early‐stage breast cancer. JAMA Oncol. 2019;5:1473. 10.1001/jamaoncol.2019.1838
    1. Coombes RC, Page K, Salari R, Hastings RK, Armstrong A, Ahmed S, et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin Cancer Res. 2019;25:4255–63. 10.1158/1078-0432.CCR-18-3663
    1. Fribbens C, Garcia Murillas I, Beaney M, Hrebien S, O'Leary B, Kilburn L, et al. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann Oncol. 2018;29:145–53. 10.1093/annonc/mdx483
    1. Clatot F, Perdrix A, Beaussire L, Lequesne J, Lévy C, Emile G, et al. Risk of early progression according to circulating ESR1 mutation, CA‐15.3 and cfDNA increases under first‐line anti‐aromatase treatment in metastatic breast cancer. Breast Cancer Res. 2020;22:56. 10.1186/s13058-020-01290-x
    1. Bidard F‐C, Hardy‐Bessard A‐C, Bachelot T, Pierga J‐Y, Clatot F & Andre F et al. Fulvestrant‐palbociclib vs continuing aromatase inhibitor‐palbociclib upon detection of circulating ESR1 mutation in HR+ HER2‐ metastatic breast cancer patients: results of PADA‐1, a UCBG‐GINECO randomized phase 3 trial. San Antonio Breast Cancer Symposium 2021; abstract GS3‐05.
    1. Chen R, Zhao W‐Q, Fang C, Yang X, Ji M. Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers. J Cancer. 2020;11:3349–56. 10.7150/jca.38391
    1. Krill‐Burger JM, Lyons MA, Kelly LA, Sciulli CM, Petrosko P, Chandran UR, et al. Renal cell neoplasms contain shared tumor type‐specific copy number variations. Am J Pathol. 2012;180:2427–39. 10.1016/j.ajpath.2012.01.044
    1. Yuan H, Li NI, Fu DA, Ren J, Hui J, Peng J, et al. Histone methyltransferase SETD2 modulates alternative splicing to inhibit intestinal tumorigenesis. J Clin Invest. 2017;127:3375–91. 10.1172/JCI94292
    1. Parker H, Rose‐Zerilli MJJ, Larrayoz M, Clifford R, Edelmann J, Blakemore S, et al. Genomic disruption of the histone methyltransferase SETD2 in chronic lymphocytic leukaemia. Leukemia. 2016;30:2179–86. 10.1038/leu.2016.134
    1. Jiang C, He C, Wu Z, Li F, Xiao J. Histone methyltransferase SETD2 regulates osteosarcoma cell growth and chemosensitivity by suppressing Wnt/β‐catenin signaling. Biochem Biophys Res Commun. 2018;502:382–8. 10.1016/j.bbrc.2018.05.176
    1. Zhou Y, Zheng X, Xu B, Deng H, Chen L, Jiang J. Histone methyltransferase SETD2 inhibits tumor growth via suppressing CXCL1‐mediated activation of cell cycle in lung adenocarcinoma. Aging (Albany NY). 2020;12:25189–206. 10.18632/aging.104120
    1. Morcillo‐Garcia S, Noblejas‐Lopez MDM, Nieto‐Jimenez C, Perez‐Peña J, Nuncia‐Cantarero M, Győrffy B, et al. Genetic mutational status of genes regulating epigenetics: role of the histone methyltransferase KMT2D in triple negative breast tumors. PLoS One. 2019;14:e0209134. 10.1371/journal.pone.0209134
    1. Chen Z, Sun T, Yang Z, Zheng Y, Yu R, Wu X, et al. Monitoring treatment efficacy and resistance in breast cancer patients via circulating tumor DNA genomic profiling. Mol Genet Genomic Med. 2020;8:e1079. 10.1002/mgg3.1079
    1. Hieronymus H, Iaquinta PJ, Wongvipat J, Gopalan A, Murali R, Mao N, et al. Deletion of 3p13‐14 locus spanning FOXP1 to SHQ1 cooperates with PTEN loss in prostate oncogenesis. Nat Commun. 2017;8:1081. 10.1038/s41467-017-01198-9
    1. Ackermann S, Kocak H, Hero B, Ehemann V, Kahlert Y, Oberthuer A, et al. FOXP1 inhibits cell growth and attenuates tumorigenicity of neuroblastoma. BMC Cancer. 2014;14:840. 10.1186/1471-2407-14-840
    1. Halacli SO, Dogan AL. FOXP1 regulation via the PI3K/Akt/p70S6K signaling pathway in breast cancer cells. Oncol Lett. 2015;9:1482–8. 10.3892/ol.2015.2885
    1. Kim S, Lee J, Jeon M, Nam SJ, Lee JE. Elevated TGF‐β1 and ‐β2 expression accelerates the epithelial to mesenchymal transition in triple‐negative breast cancer cells. Cytokine. 2015;75:151–8. 10.1016/j.cyto.2015.05.020
    1. Kim S, Han J, Jeon M, You D, Lee J, Kim HJ, et al. Silibinin inhibits triple negative breast cancer cell motility by suppressing TGF‐β2 expression. Tumour Biol. 2016;37:11397–407. 10.1007/s13277-016-5000-7
    1. Jabbarzadeh Kaboli P, Salimian F, Aghapour S, Xiang S, Zhao Q, Li M, et al. Akt‐targeted therapy as a promising strategy to overcome drug resistance in breast cancer – a comprehensive review from chemotherapy to immunotherapy. Pharmacol Res. 2020;156:104806. 10.1016/j.phrs.2020.104806
    1. Mirzoeva OK, Das D, Heiser LM, Bhattacharya S, Siwak D, Gendelman R, et al. Basal subtype and MAPK/ERK kinase (MEK)‐phosphoinositide 3‐kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res. 2009;69:565–72. 10.1158/0008-5472.CAN-08-3389
    1. Marusiak AA, Prelowska MK, Mehlich D, Lazniewski M, Kaminska K, Gorczynski A, et al. Upregulation of MLK4 promotes migratory and invasive potential of breast cancer cells. Oncogene. 2019;38:2860–75. 10.1038/s41388-018-0618-0
    1. O'Leary B, Hrebien S, Morden JP, Beaney M, Fribbens C, Huang X, et al. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. Nat Commun. 2018;9:896. 10.1038/s41467-018-03215-x
    1. Abbosh C, Birkbak NJ, Wilson GA, Jamal‐Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early‐stage lung cancer evolution. Nature. 2017;545:446–51. 10.1038/nature22364
    1. Turner NC, Kingston B, Kilburn LS, Kernaghan S, Wardley AM, Macpherson IR, et al. Circulating tumour DNA analysis to direct therapy in advanced breast cancer (plasmaMATCH): a multicentre, multicohort, phase 2a, platform trial. Lancet Oncol. 2020;21:1296–308. 10.1016/S1470-2045(20)30444-7
    1. Kader T, Goode DL, Wong SQ, Connaughton J, Rowley SM, Devereux L, et al. Copy number analysis by low coverage whole genome sequencing using ultra low‐input DNA from formalin‐fixed paraffin embedded tumor tissue. Genome Med. 2016;8:121. 10.1186/s13073-016-0375-z

Source: PubMed

3
Subskrybuj