Ketosis, ketogenic diet and food intake control: a complex relationship

Antonio Paoli, Gerardo Bosco, Enrico M Camporesi, Devanand Mangar, Antonio Paoli, Gerardo Bosco, Enrico M Camporesi, Devanand Mangar

Abstract

Though the hunger-reduction phenomenon reported during ketogenic diets is well-known, the underlying molecular and cellular mechanisms remain uncertain. Ketosis has been demonstrated to exert an anorexigenic effect via cholecystokinin (CCK) release while reducing orexigenic signals e.g., via ghrelin. However, ketone bodies (KB) seem to be able to increase food intake through AMP-activated protein kinase (AMPK) phosphorylation, gamma-aminobutyric acid (GABA) and the release and production of adiponectin. The aim of this review is to provide a summary of our current knowledge of the effects of ketogenic diet (KD) on food control in an effort to unify the apparently contradictory data into a coherent picture.

Keywords: appetite; brain; hunger; hypothalamus; ketogenic diet; ketones.

Figures

Figure 1
Figure 1
Concentrations of KB: acetone, BHB and acetoacetic acid (AcAc), and plasma free FAs (FFA) from the post-absorptive state to 40 days of starvation in human subjects. Y axis was expanded to better describe the great change in BHB concentration. Modified from Fukao et al. (2004), Owen (2005).
Figure 2
Figure 2
A reduced availability of dietary carbohydrates leads to an increased liver production of KBs. The liver cannot utilize KBs because it lacks the mitochondrial enzyme succinyl-CoA: 3-ketoacid (oxoacid) CoA transferase (SCOT) necessary for activation of acetoacetate to acetoacetyl CoA. KBs are utilized by tissues, in particularly by brain. KBs enter the citric acid cycle after being converted to acetyl CoA by hydroxybutyrate dehydrogenase (HBD), succinyl-CoA: 3–CoA transferase (SCOT), and methylacetoacetyl CoA thiolase (MAT). Modified from Owen (2005), Paoli et al. (2014).
Figure 3
Figure 3
Effects of ketone bodies on AMP-activated protein kinase (AMPK) actions in different tissues.
Figure 4
Figure 4
Scheme of orexigenic and anorexigenic effects of ketosis. The picture is highly schematic. For more details please see the text. AMPK, AMP-activated protein kinase; CCK, cholecystokinin; GABA, gamma-aminobutyric acid; BHB, β-hydroxybutyric acid; FFA, free fatty acids; ROS, reactive oxygen species; NPY, neuropeptide Y; AgRP, agouti gene-related protein.

References

    1. Amen-Ra N. (2006). Humans are evolutionarily adapted to caloric restriction resulting from ecologically dictated dietary deprivation imposed during the Plio-Pleistocene period. Med. Hypotheses 66, 978–984. 10.1016/j.mehy.2005.11.013
    1. Benani A., Troy S., Carmona M. C., Fioramonti X., Lorsignol A., Leloup C., et al. . (2007). Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake. Diabetes 56, 152–160. 10.2337/db06-0440
    1. Bortz W. M., Paul P., Haff A. C., Holmes W. L. (1972). Glycerol turnover and oxidation in man. J. Clin. Invest. 51, 1537–1546. 10.1172/JCI106950
    1. Bough K. J., Rho J. M. (2007). Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 48, 43–58. 10.1111/j.1528-1167.2007.00915.x
    1. Brown A. J. (2007). Low-carb diets, fasting and euphoria: is there a link between ketosis and gamma-hydroxybutyrate (GHB)? Med. Hypotheses 68, 268–271. 10.1016/j.mehy.2006.07.043
    1. Bueno N. B., de Melo I. S., de Oliveira S. L., da Rocha Ataide T. (2013). Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br. J. Nutr. 110, 1178–1187. 10.1017/S0007114513000548
    1. Cahill G. F., Jr. (2006). Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22. 10.1146/annurev.nutr.26.061505.111258
    1. Chearskul S., Delbridge E., Shulkes A., Proietto J., Kriketos A. (2008). Effect of weight loss and ketosis on postprandial cholecystokinin and free fatty acid concentrations. Am. J. Clin. Nutr. 87, 1238–1246.
    1. Cheng H., Isoda F., Belsham D. D., Mobbs C. V. (2008). Inhibition of agouti-related peptide expression by glucose in a clonal hypothalamic neuronal cell line is mediated by glycolysis, not oxidative phosphorylation. Endocrinology 149, 703–710. 10.1210/en.2007-0772
    1. Claret M., Smith M. A., Batterham R. L., Selman C., Choudhury A. I., Fryer L. G., et al. . (2007). AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J. Clin. Invest. 117, 2325–2336. 10.1172/JCI31516
    1. Crawford P. A., Crowley J. R., Sambandam N., Muegge B. D., Costello E. K., Hamady M., et al. . (2009). Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc. Natl. Acad. Sci. U.S.A. 106, 11276–11281. 10.1073/pnas.0902366106
    1. Date Y. (2012). Ghrelin and the vagus nerve. Meth. Enzymol. 514, 261–269. 10.1016/B978-0-12-381272-8.00016-7
    1. Demetrius L. (2005). Of mice and men. When it comes to studying ageing and the means to slow it down, mice are not just small humans. EMBO Rep. 6, S39–S44. 10.1038/sj.embor.7400422
    1. Demetrius L. (2006). Aging in mouse and human systems: a comparative study. Ann. N. Y. Acad. Sci. 1067, 66–82. 10.1196/annals.1354.010
    1. Ellenbroek J. H., van Dijck L., Tons H. A., Rabelink T. J., Carlotti F., Ballieux B. E., et al. . (2014). Long-term ketogenic diet causes glucose intolerance and reduced beta and alpha cell mass but no weight loss in mice. Am. J. Physiol. Endocrinol. Metab. 306, E552–E558. 10.1152/ajpendo.00453.2013
    1. Felig P., Owen O. E., Wahren J., Cahill G. F., Jr. (1969). Amino acid metabolism during prolonged starvation. J. Clin. Invest. 48, 584–594. 10.1172/JCI106017
    1. Flint H. J., Duncan S. H., Scott K. P., Louis P. (2015). Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 74, 13–22. 10.1017/S0029665114001463
    1. Fukao T., Lopaschuk G. D., Mitchell G. A. (2004). Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot. Essent. Fatty Acids 70, 243–251. 10.1016/j.plefa.2003.11.001
    1. Habara H., Hayashi Y., Inomata N., Niijima A., Kangawa K. (2014). Organ-specific activation of the gastric branch of the efferent vagus nerve by ghrelin in urethane-anesthetized rats. J. Pharmacol. Sci. 124, 31–39. 10.1254/jphs.13180FP
    1. Halberg N., Henriksen M., Soderhamn N., Stallknecht B., Ploug T., Schjerling P., et al. . (2005). Effect of intermittent fasting and refeeding on insulin action in healthy men. J. Appl. Physiol. 99, 2128–2136. 10.1152/japplphysiol.00683.2005
    1. Hawkins R. A., Biebuyck J. F. (1979). Ketone bodies are selectively used by individual brain regions. Science 205, 325–327. 10.1126/science.451608
    1. Horn C. C., Friedman M. I. (2004). Separation of hepatic and gastrointestinal signals from the common “hepatic” branch of the vagus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R120–R126. 10.1152/ajpregu.00673.2003
    1. Jaillard T., Roger M., Galinier A., Guillou P., Benani A., Leloup C., et al. . (2009). Hypothalamic reactive oxygen species are required for insulin-induced food intake inhibition: an NADPH oxidase-dependent mechanism. Diabetes 58, 1544–1549. 10.2337/db08-1039
    1. Jeffery R. W. (1996). Does weight cycling present a health risk? Am. J. Clin. Nutr. 63(3 Suppl.), 452S-455S.
    1. Jitrapakdee S., Vidal-Puig A., Wallace J. C. (2006). Anaplerotic roles of pyruvate carboxylase in mammalian tissues. Cell. Mol. Life Sci. 63, 843–854. 10.1007/s00018-005-5410-y
    1. Johnston C. S., Tjonn S. L., Swan P. D., White A., Hutchins H., Sears B. (2006). Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets. Am. J. Clin. Nutr. 83, 1055–1061.
    1. Johnstone A. M., Horgan G. W., Murison S. D., Bremner D. M., Lobley G. E. (2008). Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am. J. Clin. Nutr. 87, 44–55.
    1. Jumpertz R., Le D. S., Turnbaugh P. J., Trinidad C., Bogardus C., Gordon J. I., et al. . (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 94, 58–65. 10.3945/ajcn.110.010132
    1. Karatsoreos I. N., Thaler J. P., Borgland S. L., Champagne F. A., Hurd Y. L., Hill M. N. (2013). Food for thought: hormonal, experiential, and neural influences on feeding and obesity. J. Neurosci. 33, 17610–17616. 10.1523/JNEUROSCI.3452-13.2013
    1. Kashiwaya Y., Sato K., Tsuchiya N., Thomas S., Fell D. A., Veech R. L., et al. . (1994). Control of glucose utilization in working perfused rat heart. J. Biol. Chem. 269, 25502–25514.
    1. Kennedy G. C. (1953). The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. B. Biol. Sci. 140, 578–596. 10.1098/rspb.1953.0009
    1. Krebs H. A. (1966). The regulation of the release of ketone bodies by the liver. Adv. Enzyme Regul. 4, 339–354. 10.1016/0065-2571(66)90027-6
    1. Laeger T., Pohland R., Metges C. C., Kuhla B. (2012). The ketone body beta-hydroxybutyric acid influences agouti-related peptide expression via AMP-activated protein kinase in hypothalamic GT1-7 cells. J. Endocrinol. 213, 193–203. 10.1530/JOE-11-0457
    1. Langhans W., Egli G., Scharrer E. (1985). Selective hepatic vagotomy eliminates the hypophagic effect of different metabolites. J. Auton. Nerv. Syst. 13, 255–262. 10.1016/0165-1838(85)90014-1
    1. Leino R. L., Gerhart D. Z., Duelli R., Enerson B. E., Drewes L. R. (2001). Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem. Int. 38, 519–527. 10.1016/S0197-0186(00)00102-9
    1. Lopez-Legarrea P., Fuller N. R., Zulet M. A., Martinez J. A., Caterson I. D. (2014). The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state. Asia Pac. J. Clin. Nutr. 23, 360–368. 10.6133/apjcn.2014.23.3.16
    1. Maalouf M., Sullivan P. G., Davis L., Kim D. Y., Rho J. M. (2007). Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 145, 256–264. 10.1016/j.neuroscience.2006.11.065
    1. Mayer J. (1955). Regulation of energy intake and the body weight: the glucostatic theory and the lipostatic hypothesis. Ann. N. Y. Acad. Sci. 63, 15–43. 10.1111/j.1749-6632.1955.tb36543.x
    1. McCue M. D. (2010). Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 156, 1–18. 10.1016/j.cbpa.2010.01.002
    1. Medeiros N., Dai L., Ferguson A. V. (2012). Glucose-responsive neurons in the subfornical organ of the rat–a novel site for direct CNS monitoring of circulating glucose. Neuroscience 201, 157–165. 10.1016/j.neuroscience.2011.11.028
    1. Mellinkoff S. M., Frankland M., Boyle D., Greipel M. (1956). Relationship between serum amino acid concentration and fluctuations in appetite. J. Appl. Physiol. 8, 535–538.
    1. Mitchell R. W., On N. H., Del Bigio M. R., Miller D. W., Hatch G. M. (2011). Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J. Neurochem. 117, 735–746. 10.1111/j.1471-4159.2011.07245.x
    1. Moulle V. S., Picard A., Le Foll C., Levin B. E., Magnan C. (2014). Lipid sensing in the brain and regulation of energy balance. Diabetes Metab. 40, 29–33. 10.1016/j.diabet.2013.10.001
    1. Murphy K. G., Dhillo W. S., Bloom S. R. (2006). Gut peptides in the regulation of food intake and energy homeostasis. Endocr. Rev. 27, 719–727. 10.1210/er.2006-0028
    1. Newman J. C., Verdin E. (2014). Ketone bodies as signaling metabolites. Trends Endocrinol. Metab. 25, 42–52. 10.1016/j.tem.2013.09.002
    1. Nickols-Richardson S. M., Coleman M. D., Volpe J. J., Hosig K. W. (2005). Perceived hunger is lower and weight loss is greater in overweight premenopausal women consuming a low-carbohydrate/high-protein vs high-carbohydrate/low-fat diet. J. Am. Diet. Assoc. 105, 1433–1437. 10.1016/j.jada.2005.06.025
    1. Obici S., Feng Z., Arduini A., Conti R., Rossetti L. (2003). Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat. Med. 9, 756–761. 10.1038/nm873
    1. Owen O. E. (2005). Ketone bodies as a fuel for the brain during starvation. Biochem. Mol. Biol. Educ. 33, 246–251 10.1002/bmb.2005.49403304246
    1. Owen O. E., Felig P., Morgan A. P., Wahren J., Cahill G. F., Jr. (1969). Liver and kidney metabolism during prolonged starvation. J. Clin. Invest. 48, 574–583. 10.1172/JCI106016
    1. Owen O. E., Morgan A. P., Kemp H. G., Sullivan J. M., Herrera M. G., Cahill G. F., et al. . (1967). Brain metabolism during fasting. J. Clin. Invest. 46, 1589–1595. 10.1172/JCI105650
    1. Paoli A. (2014). Ketogenic diet for obesity: friend or foe? Int. J. Environ. Res. Public Health 11, 2092–2107. 10.3390/ijerph110202092
    1. Paoli A., Bianco A., Damiani E., Bosco G. (2014). Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res. Int. 2014:474296. 10.1155/2014/474296
    1. Paoli A., Bianco A., Grimaldi K. A., Lodi A., Bosco G. (2013). Long term successful weight loss with a combination biphasic ketogenic mediterranean diet and mediterranean diet maintenance protocol. Nutrients 5, 5205–5217. 10.3390/nu5125205
    1. Paoli A., Cenci L., Grimaldi K. A. (2011). Effect of Ketogenic Mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees. Nutr. J. 10:112. 10.1186/1475-2891-10-112
    1. Paoli A., Cenci L., Fancelli M., Parmagnani A., Fratter A., Cucchi A., et al. (2010). Ketogenic diet and phytoextracts comparison of the efficacy of Mediterranean, zone and tisanoreica diet on some health risk factors. Agro Food Ind. Hi Tech 21, 24–29.
    1. Paoli A., Grimaldi K., Toniolo L., Canato M., Bianco A., Fratter A. (2012). Nutrition and acne: therapeutic potential of ketogenic diets. Skin Pharmacol. Physiol. 25, 111–117. 10.1159/000336404
    1. Parks B. W., Nam E., Org E., Kostem E., Norheim F., Hui S. T., et al. . (2013). Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 17, 141–152. 10.1016/j.cmet.2012.12.007
    1. Pifferi F., Tremblay S., Plourde M., Tremblay-Mercier J., Bentourkia M., Cunnane S. C. (2008). Ketones and brain function: possible link to polyunsaturated fatty acids and availability of a new brain PET tracer, 11C-acetoacetate. Epilepsia 49 Suppl. 8, 76–79. 10.1111/j.1528-1167.2008.01842.x
    1. Ratliff J., Mutungi G., Puglisi M. J., Volek J. S., Fernandez M. L. (2009). Carbohydrate restriction (with or without additional dietary cholesterol provided by eggs) reduces insulin resistance and plasma leptin without modifying appetite hormones in adult men. Nutr. Res. 29, 262–268. 10.1016/j.nutres.2009.03.007
    1. Robinson A. M., Williamson D. H. (1980). Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol. Rev. 60, 143–187.
    1. Sanz Y., Olivares M., Moya-Perez A., Agostoni C. (2015). Understanding the role of gut microbiome in metabolic disease risk. Pediatr. Res. 77, 236–244. 10.1038/pr.2014.170
    1. Sato K., Kashiwaya Y., Keon C. A., Tsuchiya N., King M. T., Radda G. K., et al. . (1995). Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J. 9, 651–658.
    1. Schele E., Grahnemo L., Anesten F., Hallen A., Backhed F., Jansson J. O. (2013). The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology 154, 3643–3651. 10.1210/en.2012-2151
    1. Seyfried T. N., Mukherjee P. (2005). Targeting energy metabolism in brain cancer: review and hypothesis. Nutr. Metab. 2:30. 10.1186/1743-7075-2-30
    1. Stanley S., Domingos A. I., Kelly L., Garfield A., Damanpour S., Heisler L., et al. . (2013). Profiling of glucose-sensing neurons reveals that GHRH neurons are activated by hypoglycemia. Cell Metab. 18, 596–607. 10.1016/j.cmet.2013.09.002
    1. Sumithran P., Proietto J. (2013). The defence of body weight: a physiological basis for weight regain after weight loss. Clin. Sci. 124, 231–241. 10.1042/CS20120223
    1. Sumithran P., Prendergast L. A., Delbridge E., Purcell K., Shulkes A., Kriketos A., et al. . (2013). Ketosis and appetite-mediating nutrients and hormones after weight loss. Eur. J. Clin. Nutr. 67, 759–764. 10.1038/ejcn.2013.90
    1. Sumithran P., Prendergast L. A., Delbridge E., Purcell K., Shulkes A., Kriketos A., et al. . (2011). Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 365, 1597–1604. 10.1056/NEJMoa1105816
    1. Valassi E., Scacchi M., Cavagnini F. (2008). Neuroendocrine control of food intake. Nutr. Metab. Cardiovasc. Dis. 18, 158–168. 10.1016/j.numecd.2007.06.004
    1. Vazquez J. A., Kazi U. (1994). Lipolysis and gluconeogenesis from glycerol during weight reduction with very-low-calorie diets. Metab. Clin. Exp. 43, 1293–1299. 10.1016/0026-0495(94)90225-9
    1. Veech R. L. (2004). The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot. Essent. Fatty Acids 70, 309–319. 10.1016/j.plefa.2003.09.007
    1. Veldhorst M. A., Westerterp-Plantenga M. S., Westerterp K. R. (2009). Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am. J. Clin. Nutr. 90, 519–526. 10.3945/ajcn.2009.27834
    1. Veldhorst M., Smeets A., Soenen S., Hochstenbach-Waelen A., Hursel R., Diepvens K., et al. . (2008). Protein-induced satiety: effects and mechanisms of different proteins. Physiol. Behav. 94, 300–307. 10.1016/j.physbeh.2008.01.003
    1. Westman E. C., Yancy W. S., Jr., Mavropoulos J. C., Marquart M., McDuffie J. R. (2008). The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr. Metab. 5:36. 10.1186/1743-7075-5-36
    1. Wiater M. F., Li A. J., Dinh T. T., Jansen H. T., Ritter S. (2013). Leptin-sensitive neurons in the arcuate nucleus integrate activity and temperature circadian rhythms and anticipatory responses to food restriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R949–R960. 10.1152/ajpregu.00032.2013
    1. Williams G., Bing C., Cai X. J., Harrold J. A., King P. J., Liu X. H. (2001). The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol. Behav. 74, 683–701. 10.1016/S0031-9384(01)00612-6
    1. Wu Q., Boyle M. P., Palmiter R. D. (2009). Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137, 1225–1234. 10.1016/j.cell.2009.04.022
    1. Yudkoff M., Daikhin Y., Horyn O., Nissim I. (2008). Ketosis and brain handling of glutamate, glutamine, and GABA. Epilepsia 49 Suppl. 8, 73–75. 10.1111/j.1528-1167.2008.01841.x
    1. Zhang B. B., Zhou G., Li C. (2009). AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 9, 407–416. 10.1016/j.cmet.2009.03.012

Source: PubMed

3
Subskrybuj