In Silico Approach for the Definition of radiomiRNomic Signatures for Breast Cancer Differential Diagnosis

Francesca Gallivanone, Claudia Cava, Fabio Corsi, Gloria Bertoli, Isabella Castiglioni, Francesca Gallivanone, Claudia Cava, Fabio Corsi, Gloria Bertoli, Isabella Castiglioni

Abstract

Personalized medicine relies on the integration and consideration of specific characteristics of the patient, such as tumor phenotypic and genotypic profiling.

Background: Radiogenomics aim to integrate phenotypes from tumor imaging data with genomic data to discover genetic mechanisms underlying tumor development and phenotype.

Methods: We describe a computational approach that correlates phenotype from magnetic resonance imaging (MRI) of breast cancer (BC) lesions with microRNAs (miRNAs), mRNAs, and regulatory networks, developing a radiomiRNomic map. We validated our approach to the relationships between MRI and miRNA expression data derived from BC patients. We obtained 16 radiomic features quantifying the tumor phenotype. We integrated the features with miRNAs regulating a network of pathways specific for a distinct BC subtype.

Results: We found six miRNAs correlated with imaging features in Luminal A (miR-1537, -205, -335, -337, -452, and -99a), seven miRNAs (miR-142, -155, -190, -190b, -1910, -3617, and -429) in HER2+, and two miRNAs (miR-135b and -365-2) in Basal subtype. We demonstrate that the combination of correlated miRNAs and imaging features have better classification power of Luminal A versus the different BC subtypes than using miRNAs or imaging alone.

Conclusion: Our computational approach could be used to identify new radiomiRNomic profiles of multi-omics biomarkers for BC differential diagnosis and prognosis.

Keywords: MRI; RadiomiRNomics; breast cancer; magnetic resonance imaging; microRNAs/miRNAs; network; pathways; radiogenomics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Breast cancer (BC) Luminal A. (A) The pathways able to classify Luminal A vs. normal samples (p-value < 0.01, |logFoldChange (FC)| > 1). For each pathway (in different colours), miRNAs (indicated in red) able to regulate differentially expressed genes (DEGs) are indicated. (B) Relationships between pathways and miRNAs (green nodes, pathways; purple nodes, miRNAs). (C) Heatmap of the correlation between imaging features and miRNAs. The color intensity in the figure shows the corresponding p-value; yellow cells indicate greater statistical significance.
Figure 2
Figure 2
BC Luminal B. (A) Pathways able to classify Luminal B vs. normal samples (p-value < 0.01, |logFC| > 1). For each pathway (in different colours), miRNAs (in red) able to regulate DEGs are indicated. (B) Relationships between pathways and miRNAs (green nodes are the pathways and purple nodes are the miRNAs). (C) Heatmap of the correlation between imaging features and miRNAs. The color intensity in the figure shows the corresponding p-value; yellow cells indicate greater statistical significance.
Figure 3
Figure 3
BC HER2+. (A) The pathways able to classify HER2+ BC vs. normal samples (p-value < 0.01, |logFC| > 1). For each pathway (indicated in different colours), miRNAs (in red) able to regulate DEGs are indicated. (B) Relationships between pathways and miRNAs (the green nodes are the pathways and purple nodes the miRNAs). (C) Heatmap of the correlation between imaging features and miRNAs. The color intensity in the figure shows the corresponding p-value; yellow cells indicate greater statistical significance.
Figure 4
Figure 4
BC Basal. (A) The pathways able to classify basal BC vs. normal samples (p-value < 0.01, |logFC| > 1). For each pathway (in different colours), miRNAs (in red) able to regulate DEGs are indicated. (B) Relationships between pathways and miRNAs (the green nodes are the pathways and purple nodes are the miRNAs). (C) Heatmap of the correlation between imaging features and miRNAs. The color intensity in the figure shows the corresponding p-value; yellow cells indicate greater statistical significance.
Figure 5
Figure 5
Relative expression of miR-99a (A), miR-135b (B) and miR-155 (C) in Luminal A vs. all the other BC subtypes (Luminal B, Basal, HER2+) (n = 9) (*** t-test, p-value < 0.001).
Figure 6
Figure 6
Workflow of the proposed approach.

References

    1. Van ‘t Veer L.J., Dai H., van de Vijver M.J., He Y.D., Hart A.A., Mao M., Peterse H.L., van der Kooy K., Marton M.J., Witteveen A.T., et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–536. doi: 10.1038/415530a.
    1. Van de Vijver M.J., He Y.D., van‘t Veer L.J., Dai H., Hart A.A., Voskuil D.W., Schreiber G.J., Peterse J.L., Roberts C., Marton M.J., et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 2002;347:1999–2009. doi: 10.1056/NEJMoa021967.
    1. Paik S., Shak S., Tang G., Kim C., Baker J., Cronin M., Baehner F.L., Walker M.G., Watson D., Park T., et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 2004;351:2817–2826. doi: 10.1056/NEJMoa041588.
    1. Paik S., Tang G., Shak S., Kim C., Baker J., Kim W., Cronin M., Baehner F.L., Watson D., Bryant J., et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 2006;24:3726–3734. doi: 10.1200/JCO.2005.04.7985.
    1. Cronin M., Sangli C., Liu M.L., Pho M., Dutta D., Nguyen A., Jeong J., Wu J., Langone K.C., Watson D. Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin. Chem. 2007;53:1084–1091. doi: 10.1373/clinchem.2006.076497.
    1. Parker J.S., Mullins M., Cheang M.C., Leung S., Voduc D., Vickery T., Davies S., Fauron C., He X., Hu Z., et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 2009;27:1160–1167. doi: 10.1200/JCO.2008.18.1370.
    1. Prat A., Parker J.S., Fan C., Perou C.M. PAM50 assay and the three-gene model for identifying the major and clinically relevant molecular subtypes of breast cancer. Breast Cancer Res. Treat. 2012;135:301–306. doi: 10.1007/s10549-012-2143-0.
    1. Bertoli G., Cava C., Castiglioni I. The potential of miRNAs for diagnosis, treatment and monitoring of breast cancer. Scand. J. Clin. Lab. Investig. Suppl. 2016;245:S34–S39. doi: 10.1080/00365513.2016.1208444.
    1. Bertoli G., Cava C., Diceglie C., Martelli C., Rizzo G., Piccotti F., Ottobrini L., Castiglioni I. MicroRNA-567 dysregulation contributes to carcinogenesis of breast cancer, targeting tumor cell proliferation, and migration. Breast Cancer Res. Treat. 2017;161:605–616. doi: 10.1007/s10549-016-4079-2.
    1. Castiglioni I., Gallivanone F., Soda P., Avanzo M., Stancanello J., Aiello M., Interlenghi M., Salvatore M. AI-based applications in hybrid imaging: How to build smart and truly multi-parametric decision models for radiomics. Eur. J. Nucl. Med. Mol. Imaging. 2019 doi: 10.1007/s00259-019-04414-4.
    1. Aerts H.J., Velazquez E.R., Leijenaar R.T., Parmar C., Grossmann P., Carvalho S., Bussink J., Monshouwer R., Haibe-Kains B., Rietveld D., et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014;5:4006. doi: 10.1038/ncomms5006.
    1. Santamaria G., Bargallo X., Ganau S., Alonso I., Munoz M., Molla M., Fernandez P.L., Prat A. Multiparametric MR imaging to assess response following neoadjuvant systemic treatment in various breast cancer subtypes: Comparison between different definitions of pathologic complete response. Eur. J. Radiol. 2019;117:132–139. doi: 10.1016/j.ejrad.2019.06.009.
    1. Heacock L., Lewin A., Ayoola A., Moccaldi M., Babb J.S., Kim S.G., Moy L. Dynamic Contrast-Enhanced MRI Evaluation of Pathologic Complete Response in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Breast Cancer After HER2-Targeted Therapy. Acad. Radiol. 2019 doi: 10.1016/j.acra.2019.07.011.
    1. Tabouret-Viaud C., Botsikas D., Delattre B.M., Mainta I., Amzalag G., Rager O., Vinh-Hung V., Miralbell R., Ratib O. PET/MR in Breast Cancer. Semin. Nucl. Med. 2015;45:304–321. doi: 10.1053/j.semnuclmed.2015.03.003.
    1. Gillies R.J., Kinahan P.E., Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016;278:563–577. doi: 10.1148/radiol.2015151169.
    1. Pinker K., Shitano F., Sala E., Do R.K., Young R.J., Wibmer A.G., Hricak H., Sutton E.J., Morris E.A. Background, current role, and potential applications of radiogenomics. J. Magn. Reson. Imaging. 2018;47:604–620. doi: 10.1002/jmri.25870.
    1. Segal E., Sirlin C.B., Ooi C., Adler A.S., Gollub J., Chen X., Chan B.K., Matcuk G.R., Barry C.T., Chang H.Y., et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat. Biotechnol. 2007;25:675–680. doi: 10.1038/nbt1306.
    1. Diehn M., Nardini C., Wang D.S., McGovern S., Jayaraman M., Liang Y., Aldape K., Cha S., Kuo M.D. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc. Natl. Acad. Sci. USA. 2008;105:5213–5218. doi: 10.1073/pnas.0801279105.
    1. Gevaert O., Xu J., Hoang C.D., Leung A.N., Xu Y., Quon A., Rubin D.L., Napel S., Plevritis S.K. Non-small cell lung cancer: Identifying prognostic imaging biomarkers by leveraging public gene expression microarray data--methods and preliminary results. Radiology. 2012;264:387–396. doi: 10.1148/radiol.12111607.
    1. Lambin P., Rios-Velazquez E., Leijenaar R., Carvalho S., van Stiphout R.G., Granton P., Zegers C.M., Gillies R., Boellard R., Dekker A., et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer. 2012;48:441–446. doi: 10.1016/j.ejca.2011.11.036.
    1. Mahrooghy M., Ashraf A.B., Daye D., Mies C., Feldman M., Rosen M., Kontos D. Heterogeneity wavelet kinetics from DCE-MRI for classifying gene expression based breast cancer recurrence risk. Med. Image Comput. Comput. Assist. Interv. 2013;16:295–302.
    1. Ha S., Park S., Bang J.I., Kim E.K., Lee H.Y. Metabolic Radiomics for Pretreatment (18)F-FDG PET/CT to Characterize Locally Advanced Breast Cancer: Histopathologic Characteristics, Response to Neoadjuvant Chemotherapy, and Prognosis. Sci. Rep. 2017;7:1556. doi: 10.1038/s41598-017-01524-7.
    1. Ghosh P., Tamboli P., Vikram R., Rao A. Imaging-genomic pipeline for identifying gene mutations using three-dimensional intra-tumor heterogeneity features. J. Med. Imaging (Bellingham) 2015;2:041009. doi: 10.1117/1.JMI.2.4.041009.
    1. Antunovic L., Gallivanone F., Sollini M., Sagona A., Invento A., Manfrinato G., Kirienko M., Tinterri C., Chiti A., Castiglioni I. [(18)F] FDG PET/CT features for the molecular characterization of primary breast tumors. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:1945–1954. doi: 10.1007/s00259-017-3770-9.
    1. Leithner D., Bernard-Davila B., Martinez D.F., Horvat J.V., Jochelson M.S., Marino M.A., Avendano D., Ochoa-Albiztegui R.E., Sutton E.J., Morris E.A., et al. Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular Subtypes. Mol. Imaging Biol. 2019 doi: 10.1007/s11307-019-01383-w.
    1. Yang Z., He B., Zhuang X., Gao X., Wang D., Li M., Lin Z., Luo R. CT-based radiomic signatures for prediction of pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy. J. Radiat. Res. 2019;60:538–545. doi: 10.1093/jrr/rrz027.
    1. Abdollahi H., Mofid B., Shiri I., Razzaghdoust A., Saadipoor A., Mahdavi A., Galandooz H.M., Mahdavi S.R. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. Radiol. Med. 2019;124:555–567. doi: 10.1007/s11547-018-0966-4.
    1. Yuan C., Wang Z., Gu D., Tian J., Zhao P., Wei J., Yang X., Hao X., Dong D., He N., et al. Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram. Cancer Imaging. 2019;19:21. doi: 10.1186/s40644-019-0207-7.
    1. The Cancer Genome Atlas Research Network. Weinstein J.N., Collisson E.A., Mills G.B., Mills Shaw K.R., Ozenberger B.A., Ellrott K., Shmulevich I., Sander C., Stuart J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013;45:1113–1120. doi: 10.1038/ng.2764.
    1. Clark K., Vendt B., Smith K., Freymann J., Kirby J., Koppel P., Moore S., Phillips S., Maffitt D., Pringle M., et al. The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging. 2013;26:1045–1057. doi: 10.1007/s10278-013-9622-7.
    1. Pensa S., Watson C.J., Poli V. Stat3 and the inflammation/acute phase response in involution and breast cancer. J. Mammary Gland Biol. Neoplasia. 2009;14:121–129. doi: 10.1007/s10911-009-9124-x.
    1. Asegaonkar S.B., Asegaonkar B.N., Takalkar U.V., Advani S., Thorat A.P. C-Reactive Protein and Breast Cancer: New Insights from Old Molecule. Int. J. Breast Cancer. 2015;2015:145647. doi: 10.1155/2015/145647.
    1. Harburg G.C., Hinck L. Navigating breast cancer: Axon guidance molecules as breast cancer tumor suppressors and oncogenes. J. Mammary Gland Biol. Neoplasia. 2011;16:257–270. doi: 10.1007/s10911-011-9225-1.
    1. Liang F., Yang M., Tong N., Fang J., Pan Y., Li J., Zhang X. Identification of six key miRNAs associated with breast cancer through screening large-scale microarray data. Oncol. Lett. 2018;16:4159–4168. doi: 10.3892/ol.2018.9175.
    1. Nguyen B.P., Tay W.L., Chui C.K. Robust biometric recognition from palm depth images for gloved hands. IEEE Trans. Hum. Mach. Syst. 2015;45:799–804. doi: 10.1109/THMS.2015.2453203.
    1. Colaprico A., Silva T.C., Olsen C., Garofano L., Cava C., Garolini D., Sabedot T.S., Malta T.M., Pagnotta S.M., Castiglioni I., et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71. doi: 10.1093/nar/gkv1507.
    1. Colaprico A., Cava C., Bertoli G., Bontempi G., Castiglioni I. Integrative Analysis with Monte Carlo Cross-Validation Reveals miRNAs Regulating Pathways Cross-Talk in Aggressive Breast Cancer. BioMed Res. Int. 2015;2015:831314. doi: 10.1155/2015/831314.
    1. Cava C., Colaprico A., Bertoli G., Bontempi G., Mauri G., Castiglioni I. How interacting pathways are regulated by miRNAs in breast cancer subtypes. BMC Bioinform. 2016;17:348. doi: 10.1186/s12859-016-1196-1.
    1. Meyer D., Dimitriadou E., Hornik K., Weingessel A., Leisch F., Chang C.-C., Lin C.-C. Functions for Latent Class Analysis, Short Time Fourier Transform, Fuzzy Clustering, Support Vector Machines, Shortest Path Computation, Bagged Clustering, Naive Bayes Classifier. [(accessed on 5 June 2019)]; Available online: .
    1. Cava C., Novello C., Martelli C., Lodico A., Ottobrsini L., Piccotti F., Truffi M., Corsi F., Bertoli G., Castiglioni I. Theranostics application of miR-429 in HER2+ breast cancer. Theranostics. 2019;10:50–61. doi: 10.7150/thno.36274.
    1. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262.

Source: PubMed

3
Subskrybuj