The Impact of High-Intensity Interval Training on Brain Derived Neurotrophic Factor in Brain: A Mini-Review

Alberto Jiménez-Maldonado, Iván Rentería, Patricia C García-Suárez, José Moncada-Jiménez, Luiz Fernando Freire-Royes, Alberto Jiménez-Maldonado, Iván Rentería, Patricia C García-Suárez, José Moncada-Jiménez, Luiz Fernando Freire-Royes

Abstract

The brain-derived neurotrophic factor (BDNF) is a protein mainly synthetized in the neurons. Early evidence showed that BDNF participates in cognitive processes as measured at the hippocampus. This neurotrophin is as a reliable marker of brain function; moreover, recent studies have demonstrated that BDNF participates in physiological processes such as glucose homeostasis and lipid metabolism. The BDNF has been also studied using the exercise paradigm to determine its response to different exercise modalities; therefore, BDNF is considered a new member of the exercise-related molecules. The high-intensity interval training (HIIT) is an exercise protocol characterized by low work volume performed at a high intensity [i.e., ≥80% of maximal heart rate (HRmax)]. Recent evidence supports the contention that HIIT elicits higher fat oxidation in skeletal muscle than other forms of exercise. Similarly, HIIT is a good stimulus to increase maximal oxygen uptake (VO2max). Few studies have investigated the impact of HIIT on the BDNF response. The present work summarizes the effects of acute and long-term HIIT on BDNF.

Keywords: brain; brain-derived neurotrophic factor; health; high-intensity interval training; physical exercise.

Figures

FIGURE 1
FIGURE 1
(A) Moderate-intensity continuous training (MICT) increases intracellular calcium (Ca2+) levels in neurons through the NMDA receptor. Intracellular Ca2+ increases the activity of calmodulin dependent kinase II (CaMKII), triggering the activation of the MAPK/ERK/MSK cascade signaling, resulting in the increase of the expression and phosphorylation of cAMP response element-binding protein (CREB). Finally, CREB enhance the Bdnf transcription. This molecular mechanism described above result in a higher BDNF protein, the neurotrophin is released by the neuron to induce transcription of cognitive genes. The present model is based on Gomez-Pinilla’s studies (Fernandes et al., 2017). (B) MICT enhances the mitochondrial activity in neurons. Higher mitochondrial activity increases reactive oxygen species (ROS) from complexes I and III. The change in ROS levels modify and regulate a wide of signaling process including the CREB-BDNF signaling pathway. Once activated, BDNF regulates a positive feedback mechanism to induce the cognitive genes transcription. Additionally, the aerobic exercise increases the calcium concentration in neurons; this ion through the calpain and xanthine oxidase increases the ROS that consequently increase the CREB’s activation and Bdnf expression. (C) Exercise performed at high intensity (≥80% HRmax) activates several metabolic pathways in muscle (including glycolysis), this condition generates a higher systemic blood lactate concentration reaching the brain, this metabolite can be oxidized by astrocytes or neurons to produce glucose (Dienel and Hertz, 2001). In addition, experimental evidence indicates that lactate increase NMDA activity and intracellular Ca2+ levels in neurons. Indeed, it is possible that the lactate in neurons enhance the CaMKII activity and the MAPK/ERK/MSK signaling to induce the CREB’s activation and Bdnf expression. Finally, the BDNF activate a positive loop to induce the expression of cognitive genes (Yang J. et al., 2014).
FIGURE 2
FIGURE 2
Mechanism proposed about the High Intensity Interval Training (HIIT) impact on BDNF synthesis in brain. (A) HIIT increases mitochondrial activity (not reported) and ROS concentration in neurons (Afzalpour et al., 2015) compared with MICT. ROS induce higher Creb-Bdnf transcription and signaling than MICT (not reported). (B) HIIT causes greater Ca2+ concentration in neurons than MICT (not reported); this condition enhances the CaMKII activity and MAPK/ERK/MSK signaling to activate the Creb-Bdnf transcription and neuronal plasticity. Additionally, the intracellular calcium can increase the ROS generation in neurons. Once synthetized, ROS can activate Creb-Bdnf transcription. Currently, there is not experimental evidence to indicate that HIIT triggers more this mechanism than MICT. (C) HIIT elevate systemic blood lactate concentration, and consequently enhance the NMDA receptor activity to increase intracellular Ca2+ concentration in neurons (not reported). The ion activates the CaMKII activity and MAPK/ERK/MSK signaling to induce the Creb-Bdnf transcription and neuronal plasticity (not reported). (?): not reported.

References

    1. Afzalpour M. E., Chadorneshin H. T., Foadoddini M., Eivari H. A. (2015). Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiol. Behav. 147 78–83. 10.1016/j.physbeh.2015.04.012
    1. Agrawal R., Noble E., Vergnes L., Ying Z., Reue K., Gomez-Pinilla F. (2016). Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. J. Cereb. Blood Flow Metab. 36 941–953. 10.1177/0271678x15606719
    1. Aldred H. E., Hardman A. E., Taylor S. (1995). Influence of 12 weeks of training by brisk walking on postprandial lipemia and insulinemia in sedentary middle-aged women. Metabolism 44 390–397. 10.1016/0026-0495(95)90172-8
    1. Astorino T. A., Thum J. S. (2018). Interval training elicits higher enjoyment versus moderate exercise in persons with spinal cord injury. J. Spinal Cord Med. 41 77–84. 10.1080/10790268.2016.1235754
    1. Bałkowiec-Iskra E., Vermehren-Schmaedick A., Balkowiec A. (2011). Tumor necrosis factor-alpha increases brain-derived neurotrophic factor expression in trigeminal ganglion neurons in an activity-dependent manner. Neuroscience 180 322–333. 10.1016/j.neuroscience.2011.02.028
    1. Bell G. J., Harber V., Murray T., Courneya K. S., Rodgers W. (2010). A comparison of fitness training to a pedometer-based walking program matched for total energy cost. J. Phys. Act Health 7 203–213. 10.1123/jpah.7.2.203
    1. Bergersen L. H. (2015). Lactate transport and signaling in the brain: potential therapeutic targets and roles in body—Brain interaction. J. Cereb. Blood Flow Metab. 35 176–185. 10.1038/jcbfm.2014.206
    1. Billat L. V. (2001). Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 31 13–31. 10.2165/00007256-200131010-00002
    1. Bulloì M., Peeraully M. R., Trayhurn P., Folch J., Salas-Salvadoì J. (2007). Circulating nerve growth factor levels in relation to obesity and the metabolic syndrome in women. Eur. J. Endocrinol. 157 303–310. 10.1530/eje-06-0716
    1. Burgomaster K. A., Heigenhauser G. J., Gibala M. J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J. Appl. Physiol. 100 2041–2047. 10.1152/japplphysiol.01220.2005
    1. Burgomaster K. A., Hughes S. C., Heigenhauser G. J., Bradwell S. N., Gibala M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 98 1985–1990. 10.1152/japplphysiol.01095.2004
    1. Cabral-Santos C., Castrillon C. I., Miranda R. A., Monteiro P. A., Inoue D. S., Campos E. Z., et al. (2016). Inflammatory cytokines and BDNF response to high-intensity intermittent exercise: effect the exercise volume. Front. Physiol. 7:509 10.3389/fphys.2016.00509
    1. Camargo M. D., Stein R., Ribeiro J. P., Schvartzman P. R., Rizzatti M. O., Schaan B. D. (2008). Circuit weight training and cardiac morphology: a trial with magnetic resonance imaging. Br. J. Sports Med. 42 141–145; discussion 145. 10.1136/bjsm.2007.038281
    1. Caspersen C. J., Powell K. E., Christenson G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100 126–131.
    1. Cisternas P., Salazar P., Serrano F. G., Montecinos-Oliva C., Arredondo S. B., Varela-Nallar L., et al. (2015). Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance. Biochim. Biophys. Acta Mol. Basis Dis. 1852 2379–2390. 10.1016/j.bbadis.2015.08.016
    1. Coetsee C., Terblanche E. (2017). Cerebral oxygenation during cortical activation: the differential influence of three exercise training modalities. A randomized controlled trial. Eur. J. Appl. Physiol. 117 1617–1627. 10.1007/s00421-017-3651-8
    1. Conner J. M., Lauterborn J. C., Yan Q., Gall C. M., Varon S. (1997). Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci. 17 2295–2313. 10.1523/JNEUROSCI.17-07-02295.1997
    1. Connolly L. J., Bailey S. J., Krustrup P., Fulford J., Smietanka C., Jones A. M. (2017). Effects of self-paced interval and continuous training on health markers in women. Eur. J. Appl. Physiol. 117 2281–2293. 10.1007/s00421-017-3715-9
    1. Connolly L. J., Nordsborg N. B., Nyberg M., Weihe P., Krustrup P., Mohr M. (2016). Low-volume high-intensity swim training is superior to high-volume low-intensity training in relation to insulin sensitivity and glucose control in inactive middle-aged women. Eur. J. Appl. Physiol. 116 1889–1897. 10.1007/s00421-016-3441-8
    1. Courtright S. P., Williams J. L., Clark I. E., Pettitt R. W., Dicks N. D. (2016). Monitoring interval-training responses for swimming using the 3-min all-out exercise test. Int. J. Exerc. Sci. 9 545–553.
    1. Daabis R., Hassan M., Zidan M. (2017). Endurance and strength training in pulmonary rehabilitation for COPD patients. Egpt. J. Chest Dis. Tuberc. 66 231–236. 10.1016/j.ejcdt.2016.07.003
    1. de Almeida A. A., Gomes, da Silva S., Fernandes J., Peixinho-Pena L. F., Scorza F. A., et al. (2013). Differential effects of exercise intensities in hippocampal BDNF, inflammatory cytokines and cell proliferation in rats during the postnatal brain development. Neurosci. Lett. 553 1–6. 10.1016/j.neulet.2013.08.015
    1. Dienel G. A., Hertz L. (2001). Glucose and lactate metabolism during brain activation. J. Neurosci. Res. 66 824–838. 10.1002/jnr.10079
    1. Dinoff A., Herrmann N., Swardfager W., Lanctôt K. L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur. J. Neurosci. 46 1635–1646. 10.1111/ejn.13603
    1. Dinoff A., Herrmann N., Swardfager W., Liu C. S., Sherman C., Chan S., et al. (2016). The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PLoS One 11:e0163037. 10.1371/journal.pone.0163037
    1. Domínguez-Sanchéz M. A., Bustos-Cruz R. H., Velasco-Orjuela G. P., Quintero A. P., Tordecilla-Sanders A., Correa-Bautista J. E., et al. (2018). Acute effects of high intensity, resistance, or combined protocol on the increase of level of neurotrophic factors in physically inactive overweight adults: the brainfit study. Front. Physiol. 9:741. 10.3389/fphys.2018.00741
    1. Duman R. S., Li N. (2012). A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367 2475–2484. 10.1098/rstb.2011.0357
    1. Duman R. S., Monteggia L. M. (2006). A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59 1116–1127. 10.1016/j.biopsych.2006.02.013
    1. Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U.S.A. 108 3017–3022. 10.1073/pnas.1015950108
    1. Fernandes J., Arida R. M., Gomez-Pinilla F. (2017). Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci. Biobehav. Rev. 80 443–456. 10.1016/j.neubiorev.2017.06.012
    1. Fisher G., Brown A. W., Bohan Brown M. M., Alcorn A., Noles C., Winwood L., et al. (2015). High intensity interval- vs moderate intensity- training for improving cardiometabolic health in overweight or obese males: a randomized controlled trial. PLoS One 10:e0138853. 10.1371/journal.pone.0138853
    1. Freitas D. A., Rocha-Vieira E., Soares B. A., Nonato L. F., Fonseca S. R., Martins J. B., et al. (2018). High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiol. Behav. 184 6–11. 10.1016/j.physbeh.2017.10.027
    1. Frøsig C., Rose A. J., Treebak J. T., Kiens B., Richter E. A., Wojtaszewski J. F. (2007). Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160. Diabetes Metab. Res. Rev. 56 2093–2102. 10.2337/db06-1698
    1. Funakoshi H., Frisen J., Barbany G., Timmusk T., Zachrisson O., Verge V. M., et al. (1993). Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J. Cell Biol. 123 455–465. 10.1083/jcb.123.2.455
    1. Garber C. E., Blissmer B., Deschenes M. R., Franklin B. A., Lamonte M. J., Lee I.-M., et al. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 43 1334–1359. 10.1249/MSS.0b013e318213fefb
    1. Gibala M. J., Gillen J. B., Percival M. E. (2014). Physiological and health-related adaptations to low-volume interval training: influences of nutrition and sex. Sports Med. 44 127–137. 10.1007/s40279-014-0259-6
    1. Gibala M. J., Jones A. M. (2013). Physiological and performance adaptations to high-intensity interval training. Nestle Nutr. Inst. Workshop Ser. 76 51–60. 10.1159/000350256
    1. Gibala M. J., Little J. P., van Essen M., Wilkin G. P., Burgomaster K. A., Safdar A., et al. (2006). Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 575(Pt 3), 901–911. 10.1113/jphysiol.2006.112094
    1. Gibala M. J., McGee S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc. Sport Sci. Rev. 36 58–63. 10.1097/JES.0b013e318168ec1f
    1. Gillen J. B., Gibala M. J. (2013). Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl. Physiol. Nutr. Metab. 39 409–412. 10.1139/apnm-2013-0187
    1. Gomez-Pinilla F., Vaynman S., Ying Z. (2008). Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur. J. Neurosci. 28 2278–2287. 10.1111/j.1460-9568.2008.06524.x
    1. Hanyu O., Yamatani K., Ikarashi T., Soda S., Maruyama S., Kamimura T., et al. (2003). Brain-derived neurotrophic factor modulates glucagon secretion from pancreatic alpha cells: its contribution to glucose metabolism. Diabetes. Obes. Metab 5 27–37. 10.1046/j.1463-1326.2003.00238.x
    1. Heisz J. J., Tejada M. G., Paolucci E. M., Muir C. (2016). Enjoyment for high-intensity interval exercise increases during the first six weeks of training: implications for promoting exercise adherence in sedentary adults. PLoS One 11:e0168534. 10.1371/journal.pone.0168534
    1. Iaia F. M., Fiorenza M., Perri E., Alberti G., Millet G. P., Bangsbo J. (2015). The effect of two speed endurance training regimes on performance of soccer players. PLoS One 10:e0138096. 10.1371/journal.pone.0138096
    1. Jiménez-Maldonado A., de Álvarez-Buylla E. R., Montero S., Melnikov V., Castro-Rodríguez E., Gamboa-Domínguez A., et al. (2014). Chronic exercise increases plasma brain-derived neurotrophic factor levels, pancreatic islet size, and insulin tolerance in a TrkB-dependent manner. PLoS One 9:e115177. 10.1371/journal.pone.0115177
    1. Kahlert S., Zundorf G., Reiser G. (2005). Glutamate-mediated influx of extracellular Ca2+ is coupled with reactive oxygen species generation in cultured hippocampal neurons but not in astrocytes. J. Neurosci. Res. 79 262–271. 10.1002/jnr.20322
    1. Kang J., Ratamess N. (2014). Which comes first? Resistance before aerobic exercise or vice versa? ACSM’s Health Fit. J. 18 9–14. 10.1249/FIT.0000000000000004
    1. Krabbe K. S., Nielsen A. R., Krogh-Madsen R., Plomgaard P., Rasmussen P., Erikstrup C., et al. (2007). Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50 431–438. 10.1007/s00125-006-0537-4
    1. Li B., Lang N., Cheng Z.-F. (2016). Serum levels of brain-derived neurotrophic factor are associated with diabetes risk, complications, and obesity: a cohort study from chinese patients with type 2 diabetes. Mol. Neurobiol. 53 5492–5499. 10.1007/s12035-015-9461-2
    1. Lira F. S., dos Santos T., Caldeira R. S., Inoue D. S., Panissa V. L. G., Cabral-Santos C., et al. (2017). Short-term high- and moderate-intensity training modifies inflammatory and metabolic factors in response to acute exercise. Front. Physiol. 8:856. 10.3389/fphys.2017.00856
    1. Lommatzsch M., Zingler D., Schuhbaeck K., Schloetcke K., Zingler C., Schuff-Werner P., et al. (2005). The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol. Aging 26 115–123. 10.1016/j.neurobiolaging.2004.03.002
    1. Lucas S. J., Cotter J. D., Brassard P., Bailey D. M. (2015). High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. J. Cereb. Blood Flow Metab. 35 902–911. 10.1038/jcbfm.2015.49
    1. Machado A. F., Baker J. S., Figueira Junior A. J., Bocalini D. S. (2017). High-intensity interval training using whole-body exercises: training recommendations and methodological overview. Clin. Physiol. Funct. Imaging 10.1111/cpf.12433 [Epub ahead of print].
    1. Mador M. J., Bozkanat E., Aggarwal A., Shaffer M., Kufel T. J. (2004). Endurance and strength training in patients with COPD. Chest 125 2036–2045. 10.1378/chest.125.6.2036
    1. Matthews V. B., Åström M.-B., Chan M. H. S., Bruce C. R., Krabbe K. S., Prelovsek O., et al. (2009). Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52 1409–1418. 10.1007/s00125-009-1364-1
    1. Mowla S. J., Farhadi H. F., Pareek S., Atwal J. K., Morris S. J., Seidah N. G., et al. (2001). Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J. Biol. Chem. 276 12660–12666. 10.1074/jbc.M008104200
    1. Murawska-Cialowicz E., Wojna J., Zuwala-Jagiello J. (2015). Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 66811–821.
    1. Oliff H. S., Berchtold N. C., Isackson P., Cotman C. W. (1998). Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res. Mol. Brain Res. 61 147–153. 10.1016/S0169-328X(98)00222-8
    1. Physical Activity Guidelines Advisory Committee (2008). Physical Activity Guidelines Advisory Committee Report. Washington, DC: Physical Activity Guidelines Advisory Committee.
    1. Poehlman E. T., Dvorak R. V., DeNino W. F., Brochu M., Ades P. A. (2000). Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: a controlled randomized trial. J. Clin. Endocrinol. Metab. 85 2463–2468. 10.1210/jcem.85.7.6692
    1. Pugazhenthi S., Nesterova A., Jambal P., Audesirk G., Kern M., Cabell L., et al. (2003). Oxidative stress-mediated down-regulation of bcl-2 promoter in hippocampal neurons. J. Neurochem. 84 982–996. 10.1046/j.1471-4159.2003.01606.x
    1. Radak Z., Suzuki K., Higuchi M., Balogh L., Boldogh I., Koltai E. (2016). Physical exercise, reactive oxygen species and neuroprotection. Free Radic. Biol. Med. 98 187–196. 10.1016/j.freeradbiomed.2016.01.024
    1. Rasmussen P., Brassard P., Adser H., Pedersen M. V., Leick L., Hart E., et al. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 94 1062–1069. 10.1113/expphysiol.2009.048512
    1. Robinson M. M., Lowe V. J., Nair K. S. (2018). Increased brain glucose uptake after 12 weeks of aerobic high-intensity interval training in young and older adults. J. Clin. Endocrinol. Metab. 103 221–227. 10.1210/jc.2017-01571
    1. Rudge J. S., Mather P. E., Pasnikowski E. M., Cai N., Corcoran T., Acheson A., et al. (1998). Endogenous BDNF protein is increased in adult rat hippocampus after a kainic acid induced excitotoxic insult but exogenous BDNF is not neuroprotective. Exp. Neurol. 149 398–410. 10.1006/exnr.1997.6737
    1. Saanijoki T., Nummenmaa L., Eskelinen J.-J., Savolainen A. M., Vahlberg T., Kalliokoski K. K., et al. (2015). Affective responses to repeated sessions of high-intensity interval training. Med. Sci. Sports Exerc. 47 2604–2611. 10.1249/mss.0000000000000721
    1. Saanijoki T., Nummenmaa L., Koivumäki M., Löyttyniemi E., Kalliokoski K. K., Hannukainen J. C. (2018). Affective adaptation to repeated SIT and MICT protocols in insulin-resistant subjects. Med. Sci. Sports Exerc. 50 18–27. 10.1249/mss.0000000000001415
    1. Sanchez-Sanchez J., Carretero M., Ramirez-Campillo R., Petisco C., Diego M., Gonzalo-Skok O., et al. (2018). Effects of high-intensity training with one versus three changes of direction on youth female basketball players’ performance. Kinesiology 50(Suppl. 1), 117–125.
    1. Santos-Concejero J., Billaut F., Grobler L., Olivan J., Noakes T. D., Tucker R. (2017). Brain oxygenation declines in elite Kenyan runners during a maximal interval training session. Eur. J. Appl. Physiol. 117 1017–1024. 10.1007/s00421-017-3590-4
    1. Satriotomo I., Nichols N. L., Dale E. A., Emery A. T., Dahlberg J. M., Mitchell G. S. (2016). Repetitive acute intermittent hypoxia increases growth/neurotrophic factor expression in non-respiratory motor neurons. Neuroscience 322 479–488. 10.1016/j.neuroscience.2016.02.060
    1. Saucedo Marquez C. M., Vanaudenaerde B., Troosters T., Wenderoth N. (2015). High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J. Appl. Physiol. 119 1363–1373. 10.1152/japplphysiol.00126.2015
    1. Schleppenbach L. N., Ezer A. B., Gronemus S. A., Widenski K. R., Braun S. I., Janot J. M. (2017). Speed- and circuit-based high-intensity interval training on recovery oxygen consumption. Int. J. Exerc. Sci. 10 942–953.
    1. Seifert T., Brassard P., Wissenberg M., Rasmussen P., Nordby P., Stallknecht B., et al. (2010). Endurance training enhances BDNF release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298 R372–R377. 10.1152/ajpregu.00525.2009
    1. Slusher A. L., Patterson V. T., Schwartz C. S., Acevedo E. O. (2018). Impact of high intensity interval exercise on executive function and brain derived neurotrophic factor in healthy college aged males. Physiol. Behav. 191 116–122. 10.1016/j.physbeh.2018.04.018
    1. So J. H., Huang C., Ge M., Cai G., Zhang L., Lu Y., et al. (2017). Intense exercise promotes adult hippocampal neurogenesis but not spatial discrimination. Front. Cell. Neurosci. 11:13 10.3389/fncel.2017.00013
    1. Stöggl T. L., Björklund G. (2017). High intensity interval training leads to greater improvements in acute heart rate recovery and anaerobic power as high volume low intensity training. Front. Physiol. 8:562. 10.3389/fphys.2017.00562
    1. Takuma K., Lee E., Kidawara M., Mori K., Kimura Y., Baba A., et al. (1999). Apoptosis in Ca2 + reperfusion injury of cultured astrocytes: roles of reactive oxygen species and NF-kappaB activation. Eur. J. Neurosci. 11 4204–4212. 10.1046/j.1460-9568.1999.00850.x
    1. Talanian J. L., Galloway S. D., Heigenhauser G. J., Bonen A., Spriet L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J. Appl. Physiol. 102 1439–1447. 10.1152/japplphysiol.01098.2006
    1. Tsuchida A., Nakagawa T., Itakura Y., Ichihara J., Ogawa W., Kasuga M., et al. (2001). The effects of brain-derived neurotrophic factor on insulin signal transduction in the liver of diabetic mice. Diabetologia 44 555–566. 10.1007/s001250051661
    1. Tyler W. J., Pozzo-Miller L. D. (2001). BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J. Neurosci. 21 4249–4258. 10.1523/JNEUROSCI.21-12-04249.2001
    1. Vaynman S., Ying Z., Gomez-Pinilla F. (2003). Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 122 647–657. 10.1016/j.neuroscience.2003.08.001
    1. Vaynman S., Ying Z., Gomez-Pinilla F. (2004). Exercise induces BDNF and synapsin I to specific hippocampal subfields. J. Neurosci. Res. 76 356–362. 10.1002/jnr.20077
    1. Wang H., Yuan G., Prabhakar N. R., Boswell M., Katz D. M. (2006). Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. J. Neurochem. 96 694–705. 10.1111/j.1471-4159.2005.03572.x
    1. Weston K. S., Wisløff U., Coombes J. S. (2014). High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br. J. Sports Med. 48 1227–1234. 10.1136/bjsports-2013-092576
    1. Yamanaka M., Itakura Y., Inoue T., Tsuchida A., Nakagawa T., Noguchi H., et al. (2006). Protective effect of brain-derived neurotrophic factor on pancreatic islets in obese diabetic mice. Metab. Clin. Exp. 55 1286–1292. 10.1016/j.metabol.2006.04.017
    1. Yang J., Ruchti E., Petit J. M., Jourdain P., Grenningloh G., Allaman I., et al. (2014). Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc. Natl. Acad. Sci. U.S.A. 111 12228–12233. 10.1073/pnas.1322912111
    1. Yang J. L., Lin Y. T., Chuang P. C., Bohr V. A., Mattson M. P. (2014). BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromol. Med. 16 161–174. 10.1007/s12017-013-8270-x

Source: PubMed

3
Subskrybuj