Discovery and validation of a novel blood-based molecular biomarker of rejection following liver transplantation

Josh Levitsky, Sumeet K Asrani, Thomas Schiano, Adyr Moss, Kenneth Chavin, Charles Miller, Kexin Guo, Lihui Zhao, Manoj Kandpal, Nancy Bridges, Merideth Brown, Brian Armstrong, Sunil Kurian, Anthony J Demetris, Michael Abecassis, Clinical Trials in Organ Transplantation - 14 Consortium, Josh Levitsky, Sumeet K Asrani, Thomas Schiano, Adyr Moss, Kenneth Chavin, Charles Miller, Kexin Guo, Lihui Zhao, Manoj Kandpal, Nancy Bridges, Merideth Brown, Brian Armstrong, Sunil Kurian, Anthony J Demetris, Michael Abecassis, Clinical Trials in Organ Transplantation - 14 Consortium

Abstract

Noninvasive biomarker profiles of acute rejection (AR) could affect the management of liver transplant (LT) recipients. Peripheral blood was collected following LT for discovery (Northwestern University [NU]) and validation (National Institute of Allergy and Infectious Diseases Clinical Trials in Organ Transplantation [CTOT]-14 study). Blood gene profiling was paired with biopsies showing AR or ADNR (acute dysfunction no rejection) as well as stable graft function samples (Transplant eXcellent-TX). CTOT-14 subjects had serial collections prior to AR, ADNR, TX, and after AR treatment. NU cohort gene expression (46 AR, 45 TX) was analyzed using random forest models to generate a classifier training set (36 gene probe) distinguishing AR vs TX (area under the curve 0.92). The algorithm and threshold were locked and tested on the CTOT-14 validation cohort (14 AR, 50 TX), yielding an accuracy of 0.77, sensitivity 0.57, specificity 0.82, positive predictive value (PPV) 0.47, and negative predictive value (NPV) 0.87 for AR vs TX. The probability score line slopes were positive preceding AR, and negative preceding TX and non-AR (TX + ADNR) (P ≤ .001) and following AR treatment. In conclusion, we have developed a blood biomarker diagnostic for AR that can be detected prior to AR-associated graft injury as well a normal graft function (non-AR). Further studies are needed to evaluate its utility in precision-guided immunosuppression optimization following LT.

Keywords: biomarker; clinical research/practice; clinical trial; genomics; immunobiology; immunosuppression/immune modulation; liver allograft function/dysfunction; liver transplantation/hepatology; rejection; translational research/science.

Conflict of interest statement

The authors of this manuscript have conflicts of interest to disclose as described by the American Journal of Transplantation. Transplant Genomics Incorporated (Eurofins/Viracor): Josh Levitsky (Consultant, Stockholder), Sunil Kurian (Consultant, Stockholder), Michael Abecassis (Co‐Founder, Stockholder).

© 2020 The Authors. American Journal of Transplantation published by Wiley Periodicals LLC on behalf of The American Society of Transplantation and the American Society of Transplant Surgeons.

Figures

FIGURE 1
FIGURE 1
CTOT‐14 consort diagram—enrollment and clinical phenotypes with samples. ADNR, acute dysfunction no rejection; AR, acute rejection; BGE, blood gene expression; Bx, biopsy; CTOT, Clinical Trials in Organ Transplantation; HCV, hepatitis C virus; HCV‐R, hepatitis C virus recurrence; TX, Transplant eXcellent
FIGURE 2
FIGURE 2
The receiver operating curves (ROC)—AR vs TX (NU discovery cohort). The area under the curve is displayed as well as the performance characteristics (15% AR prevalence adjustment) at the 0.5 threshold (asterisk). AR, acute rejection; NU, Northwestern University; TX, Transplant eXcellent
FIGURE 3
FIGURE 3
Serial changes in gene expression using line slopes prior to AR, TX, and non‐AR. A, Pre‐AR vs pre‐TX (P < .001). B, Pre‐AR vs pre‐non‐AR (P < .001). C, Pre‐AR vs post‐AR, P = .085). The P value result is the phenotype comparison of the entire line slope from the time of transplantation, whereas the figures visually display a more focused time period around AR, TX, and non‐AR diagnosis (Time 0). AR, acute rejection; TX, Transplant eXcellent [Color figure can be viewed at wileyonlinelibrary.com]

References

    1. Wiesner RH, Batts KP, Krom RA. Evolving concepts in the diagnosis, pathogenesis, and treatment of chronic hepatic allograft rejection. Liver Transpl Surg. 1999;5(5):388‐400.
    1. Watt KD, Pedersen RA, Kremers WK, Heimbach JK, Charlton MR. Evolution of causes and risk factors for mortality post‐liver transplant: results of the NIDDK long‐term follow‐up study. Am J Transplant. 2010;10(6):1420‐1427.
    1. Levitsky J, O'Leary JG, Asrani S, et al. Protecting the kidney in liver transplant recipients: practice‐based recommendations from the American society of transplantation liver and intestine community of practice. Am J Transplant. 2016;16(9):2532‐2544.
    1. Levitsky J, Feng S. Tolerance in clinical liver transplantation. Hum Immunol. 2018;79(5):283‐287.
    1. Benítez C, Londoño M‐C, Miquel R, et al. Prospective multicenter clinical trial of immunosuppressive drug withdrawal in stable adult liver transplant recipients. Hepatology. 2013;58(5):1824‐1835.
    1. Feng S, Ekong UD, Lobritto SJ, et al. Complete immunosuppression withdrawal and subsequent allograft function among pediatric recipients of parental living donor liver transplants. JAMA. 2012;307(3):283‐293.
    1. De Simone P, Nevens F, De Carlis L, et al. Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. Am J Transplant. 2012;12(11):3008‐3020.
    1. Teperman L, Moonka D, Sebastian A, et al. Calcineurin inhibitor‐free mycophenolate mofetil/sirolimus maintenance in liver transplantation: the randomized spare‐the‐nephron trial. Liver Transpl. 2013;19(7):675‐689.
    1. Shaked A, DesMarais MR, Kopetskie H, et al. Outcomes of immunosuppression minimization and withdrawal early after liver transplantation. Am J Transplant. 2019;19(5):1397‐1409.
    1. Banff Working Group on Liver Allograft P . Importance of liver biopsy findings in immunosuppression management: biopsy monitoring and working criteria for patients with operational tolerance. Liver Transplantation. 2012;18(10):1154‐1170.
    1. Demetris AJ, Isse K. Tissue biopsy monitoring of operational tolerance in liver allograft recipients. Curr Opin Organ Transplant. 2013;18(3):345‐353.
    1. Kowalski RJ, Post DR, Mannon RB, et al. Assessing relative risks of infection and rejection: a meta‐analysis using an immune function assay. Transplantation. 2006;82(5):663‐668.
    1. Xue F, Zhang J, Han L, et al. Immune cell functional assay in monitoring of adult liver transplantation recipients with infection. Transplantation. 2010;89(5):620‐626.
    1. Cabrera R, Ararat M, Soldevila‐Pico C, et al. Using an immune functional assay to differentiate acute cellular rejection from recurrent hepatitis C in liver transplant patients. Liver Transpl. 2009;15(2):216‐222.
    1. Fan H, Li LX, Han DD, Kou JT, Li P, He Q. Increase of peripheral Th17 lymphocytes during acute cellular rejection in liver transplant recipients. Hepatobiliary Pancreat Dis Int. 2012;11(6):606‐611.
    1. Farid WRR, Pan Q, van der Meer AJP, et al. Hepatocyte‐derived microRNAs as serum biomarkers of hepatic injury and rejection after liver transplantation. Liver Transpl. 2012;18(3):290‐297.
    1. Gomez‐Mateo J, Marin L, Lopez‐Alvarez MR, et al. TGF‐beta1 gene polymorphism in liver graft recipients. Transpl Immunol. 2006;17(1):55‐57.
    1. Joshi D, Salehi S, Brereton H, et al. Distinct microRNA profiles are associated with the severity of hepatitis C virus recurrence and acute cellular rejection after liver transplantation. Liver Transpl. 2013;19(4):383‐394.
    1. Kamei H, Masuda S, Nakamura T, Oike F, Takada Y, Hamajima N. Association of transporter associated with antigen processing (TAP) gene polymorphisms in donors with acute cellular rejection in living donor liver transplantation. J Gastrointestin Liver Dis. 2013;22(2):167‐171.
    1. Karimi MH, Daneshmandi S, Pourfathollah AA, et al. Association of IL‐6 promoter and IFN‐gamma gene polymorphisms with acute rejection of liver transplantation. Mol Biol Rep. 2011;38(7):4437‐4443.
    1. Bohne F, Martínez‐Llordella M, Lozano J‐J, et al. Intra‐graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation. J Clin Invest. 2012;122(1):368‐382.
    1. Massoud O, Heimbach J, Viker K, et al. Noninvasive diagnosis of acute cellular rejection in liver transplant recipients: a proteomic signature validated by enzyme‐linked immunosorbent assay. Liver Transpl. 2011;17(6):723‐732.
    1. Moya‐Quiles MR, Alvarez R, Miras M, et al. Impact of recipient HLA‐C in liver transplant: a protective effect of HLA‐Cw*07 on acute rejection. Hum Immunol. 2007;68(1):51‐58.
    1. Sindhi R, Higgs BW, Weeks DE, et al. Genetic variants in major histocompatibility complex‐linked genes associate with pediatric liver transplant rejection. Gastroenterology. 2008;135(3):830‐839.e10.
    1. Asaoka T, Kato T, Marubashi S, et al. Differential transcriptome patterns for acute cellular rejection in recipients with recurrent hepatitis C after liver transplantation. Liver Transpl. 2009;15(12):1738‐1749.
    1. Gehrau R, Maluf D, Archer K, et al. Molecular pathways differentiate hepatitis C virus (HCV) recurrence from acute cellular rejection in HCV liver recipients. Mol Med. 2011;17(7–8):824‐833.
    1. Sreekumar R, Rasmussen DL, Wiesner RH, Charlton MR. Differential allograft gene expression in acute cellular rejection and recurrence of hepatitis C after liver transplantation. Liver Transpl. 2002;8(9):814‐821.
    1. Shaked A, Chang B‐L, Barnes MR, et al. An ectopically expressed serum miRNA signature is prognostic, diagnostic, and biologically related to liver allograft rejection. Hepatology. 2017;65(1):269‐280.
    1. Bonaccorsi‐Riani E, Pennycuick A, Londoño M‐C, et al. Molecular characterization of acute cellular rejection occurring during intentional immunosuppression withdrawal in liver transplantation. Am J Transplant. 2016;16(2):484‐496.
    1. Ishak K, Baptista A, Bianchi L, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995;22(6):696‐699.
    1. Banff schema for grading liver allograft rejection: an international consensus document. Hepatology. 1997;25(3):658‐663.
    1. Demetris AJ, Bellamy C, Hübscher SG, et al. 2016 comprehensive update of the Banff Working Group on Liver Allograft Pathology: Introduction Of Antibody‐Mediated Rejection. Am J Transplant. 2016;16(10):2816‐2835.
    1. Friedewald JJ, Kurian SM, Heilman RL, et al. Development and clinical validity of a novel blood‐based molecular biomarker for subclinical acute rejection following kidney transplant. Am J Transplant. 2019;19(1):98‐109.
    1. Kurian SM, Williams AN, Gelbart T, et al. Molecular classifiers for acute kidney transplant rejection in peripheral blood by whole genome gene expression profiling. Am J Transplant. 2014;14(5):1164‐1172.
    1. Michell CM, Nass SJ, Ommen GS. Evolution of Translational Omics: Lessons Learned and the Path Forward. Washington, DC: Institute of Medicine, The National Academies Press;2012:0‐354. 10.17226/13297
    1. Diaz‐Uriarte R, Alvarez de Andres S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006;7:3.
    1. Chatzipetrou MA, Mathew JM, Kenyon NS, et al. Analysis of post‐transplant immune status in recipients of liver/bone marrow allografts. Hum Immunol. 1999;60(12):1281‐1288.
    1. Ramji A, Yoshida EM, Bain VG, et al. Late acute rejection after liver transplantation: the Western Canada experience. Liver Transpl. 2002;8(10):945‐951.
    1. Uemura T, Ikegami T, Sanchez EQ, et al. Late acute rejection after liver transplantation impacts patient survival. Clin Transplant. 2008;22(3):316‐323.
    1. Thurairajah PH, Carbone M, Bridgestock H, et al. Late acute liver allograft rejection; a study of its natural history and graft survival in the current era. Transplantation. 2013;95(7):955‐959.
    1. Levitsky J, Goldberg D, Smith AR, et al. Acute rejection increases risk of graft failure and death in recent liver transplant recipients. Clin Gastroenterol Hepatol. 2017;15(4):584‐593e582.
    1. Kurian SM, Whisenant T, Mas V, et al. Biomarker guidelines for high‐dimensional genomic studies in transplantation: adding method to the madness. Transplantation. 2017;101(3):457‐463.
    1. Manns MP, Czaja AJ, Gorham JD, et al. Diagnosis and management of autoimmune hepatitis. Hepatology. 2010;51(6):2193‐2213.
    1. Modena BD, Kurian SM, Gaber LW, et al. Gene expression in biopsies of acute rejection and interstitial fibrosis/tubular atrophy reveals highly shared mechanisms that correlate with worse long‐term outcomes. Am J Transplant. 2016;16(7):1982‐1998.
    1. Mengel M, Sis B, Kim D, et al. The molecular phenotype of heart transplant biopsies: relationship to histopathological and clinical variables. Am J Transplant. 2010;10(9):2105‐2115.
    1. Sellarés J, Reeve J, Loupy A, et al. Molecular diagnosis of antibody‐mediated rejection in human kidney transplants. Am J Transplant. 2013;13(4):971‐983.
    1. Li L, Khatri P, Sigdel TK, et al. A peripheral blood diagnostic test for acute rejection in renal transplantation. Am J Transplant. 2012;12(10):2710‐2718.
    1. Suthanthiran M, Schwartz JE, Ding R, et al. Urinary‐cell mRNA profile and acute cellular rejection in kidney allografts. N Engl J Med. 2013;369(1):20‐31.
    1. Muthukumar T, Dadhania D, Ding R, et al. Messenger RNA for FOXP3 in the urine of renal‐allograft recipients. N Engl J Med. 2005;353(22):2342‐2351.
    1. Li B, Hartono C, Ding R, et al. Noninvasive diagnosis of renal‐allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med. 2001;344(13):947‐954.
    1. Pham MX, Teuteberg JJ, Kfoury AG, et al. Gene‐expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med. 2010;362(20):1890‐1900.
    1. Rush DN, Gibson IW. Subclinical inflammation in renal transplantation. Transplantation. 2019;103(6):e139‐e145.
    1. Soma O, Hatakeyama S, Yoneyama T, et al. Serum N‐glycan profiling can predict biopsy‐proven graft rejection after living kidney transplantation. Clin Exp Nephrol. 2020;24(2):174‐184.
    1. Zhang W, Yi Z, Keung KL, et al. A peripheral blood gene expression signature to diagnose subclinical acute rejection. J Am Soc Nephrol. 2019;30(8):1481‐1494.
    1. Kamei H, Masuda S, Nakamura T, et al. Impact of glutathione S‐transferase T1 gene polymorphisms on acute cellular rejection in living donor liver transplantation. Transpl Immunol. 2013;28(1):14‐17.
    1. Evans PC, Smith S, Hirschfield G, et al. Recipient HLA‐DR3, tumour necrosis factor‐alpha promoter allele‐2 (tumour necrosis factor‐2) and cytomegalovirus infection are interrelated risk factors for chronic rejection of liver grafts. J Hepatol. 2001;34(5):711‐715.
    1. Hanvesakul R, Spencer N, Cook M, et al. Donor HLA‐C genotype has a profound impact on the clinical outcome following liver transplantation. Am J Transplant. 2008;8(9):1931‐1941.
    1. Toby TK, Abecassis M, Kim K, et al. Proteoforms in peripheral blood mononuclear cells as novel rejection biomarkers in liver transplant recipients. Am J Transplant. 2017;17(9):2458‐2467.
    1. Jucaud V, Shaked A, DesMarais M, et al. Prevalence and impact of de novo donor‐specific antibodies during a multicenter immunosuppression withdrawal trial in adult liver transplant recipients. Hepatology. 2019;69(3):1273‐1286.
    1. Levitsky J, Asrani SK, Klintmalm G, et al. Discovery and validation of a biomarker model (PRESERVE) predictive of renal outcomes after liver transplantation. Hepatology. 2019;10.1002/hep.30939.
    1. Londoño M‐C, Souza LN, Lozano J‐J, et al. Molecular profiling of subclinical inflammatory lesions in long‐term surviving adult liver transplant recipients. J Hepatol. 2018;69(3):626‐634.
    1. Feng S, Bucuvalas JC, Demetris AJ, et al. Evidence of chronic allograft injury in liver biopsies from long‐term pediatric recipients of liver transplants. Gastroenterology. 2018;155(6):1838‐1851e1837.
    1. Levitsky J, Asrani SK, Abecassis M, Ruiz R, Jennings LW, Klintmalm G. External validation of a pretransplant biomarker model (REVERSE) predictive of renal recovery after liver transplantation. Hepatology. 2019;70(4):1349‐1359.

Source: PubMed

3
Subskrybuj