Success and failure of controlling the real-time functional magnetic resonance imaging neurofeedback signal are reflected in the striatum

Leon Skottnik, Bettina Sorger, Tabea Kamp, David Linden, Rainer Goebel, Leon Skottnik, Bettina Sorger, Tabea Kamp, David Linden, Rainer Goebel

Abstract

Introduction: Over the last decades, neurofeedback has been applied in variety of research contexts and therapeutic interventions. Despite this extensive use, its neural mechanisms are still under debate. Several scientific advances have suggested that different networks become jointly active during neurofeedback, including regions generally involved in self-regulation, regions related to the specific mental task driving the neurofeedback and regions generally involved in feedback learning (Sitaram et al., 2017, Nature Reviews Neuroscience, 18, 86).

Methods: To investigate the neural mechanisms specific to neurofeedback but independent from general effects of self-regulation, we compared brain activation as measured with functional magnetic resonance imaging (fMRI) across different mental tasks involving gradual self-regulation with and without providing neurofeedback. Ten participants freely chose one self-regulation task and underwent two training sessions during fMRI scanning, one with and one without receiving neurofeedback. During neurofeedback sessions, feedback signals were provided in real-time based on activity in task-related, individually defined target regions. In both sessions, participants aimed at reaching and holding low, medium, or high brain-activation levels in the target region.

Results: During gradual self-regulation with neurofeedback, a network of cortical control regions as well as regions implicated in reward and feedback processing were activated. Self-regulation with feedback was accompanied by stronger activation within the striatum across different mental tasks. Additional time-resolved single-trial analysis revealed that neurofeedback performance was positively correlated with a delayed brain response in the striatum that reflected the accuracy of self-regulation.

Conclusion: Overall, these findings support that neurofeedback contributes to self-regulation through task-general regions involved in feedback and reward processing.

Keywords: neurofeedback; real-time functional magnetic resonance imaging; self-regulation; striatum.

Conflict of interest statement

None declared.

© 2019 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
Absolute distance of achieved activation level to instructed target activation level. Participants evaluated the appropriateness of their mental operation (and therewith their self‐regulation success) based on the visually provided neurofeedback information. They could assess their self‐regulation success by obtaining the absolute distance between the magnitude of the actually achieved activation level (provided neurofeedback information) and the instructed target activation level (indicated by the red rectangular). A smaller and larger distance to the target activation level represented a superior and inferior self‐regulation performance, respectively
Figure 2
Figure 2
Definition of striatum regions of interest. The figure shows the right‐ and left‐hemispheric striatum regions of interest (R = right, L = left) overlaid on the mean of all individual anatomical data sets and slice positions of displayed coronal (orange) and axial (purple) slices. Regions of interests included all voxels in a 3‐mm sphere centered around peak coordinates from a recent meta‐analysis on reward processing representing maximal overlap of BOLD‐signal increase in response to positive reward (Bartra et al., 2013). Provided coordinates are in Talairach space
Figure 3
Figure 3
Time‐resolved analysis of striatum activation in response to self‐regulation success. The figure displays the logic of the performed correlation analysis. Simulated data during gradual self‐regulation is shown: (a) An HRF‐convolved time series of performance indices is created from the absolute distance to the target activation level. Successful self‐regulation (i.e., accurate regulation of the feedback signal to the target activation level) is represented by a low value. (b) When a corresponding activation increase in the striatum ROI is delayed (in this example 6 TR), the activation peak is not paired to the improvement in performance during correlation analysis. (c) Only, when the striatum time‐course is shifted 6 TRs backwards, the increase in striatum activation is aligned to the decrease in absolute distance during correlation analysis
Figure 4
Figure 4
Self‐regulation with neurofeedback compared to passive viewing of neurofeedback. (a) In comparison to the rest condition, self‐regulation with neurofeedback was accompanied by increased activation in prefrontal control regions and regions involved in feedback processing (visual cortices, anterior insula) as well as decreased activation in the default mode network and the posterior insula. (b) An extended increase in subcortical activation was present during self‐regulation with neurofeedback, encompassing the striatum, thalamus, claustrum and the brainstem. The figure shows the whole‐brain RFX contrast map thresholded at FDR corrected q < 0.05 on a sample participant's inflated cortex segmentation (a) and on the average of the individual anatomical data sets (b)
Figure 5
Figure 5
Effect of gradual self‐regulation success on striatum activation (group and single‐subject results). The figure visualizes the BOLD‐signal level within the striatum region of interest ipsilateral to the neurofeedback target region for the two type‐of‐training conditions and across the different target‐level conditions: (a) Mean beta values for each target‐level condition across all participants separately for the no‐feedback (blue) and feedback (red) condition. Error bars represent standard errors of the means. When pooling the data across the target‐level conditions, the difference of mean‐beta values for the two type‐of training conditions (feedback, no‐feedback) was significant (p < 0.05, Bonferroni‐corrected, one‐sided). (b) Single‐subject mean beta values separately for each target‐level and type‐of‐training condition. In 80% of participants (red‐rimmed), the mean striatum activation (i.e., pooled activation across the three target‐level conditions) was higher in the feedback compared to the no‐feedback condition. Remark .Participants with black underline underwent the feedback condition first and no‐feedback condition second. Abbreviations for mental strategies: IS = Inner speech, MO = mental orchestra, VM = visual motion imagery, MD = mental drawing, MS = mental sounds, MR = mental running
Figure 6
Figure 6
Relationship between self‐regulation success and striatum activation level (group and single subject results). Relationship between absolute distance to target activation level and striatum activation separately for the two type‐of‐training conditions. (a) Mean Fisher z‐transformed correlation coefficients between self‐regulation success and striatum activation separately for an early time window (0–3 TR shift, immediate and slightly delayed striatum activation) and a late time window (4–7 TR shift, delayed striatum activation). The difference of the correlation values with respect to the two type‐of‐training conditions (feedback, no feedback) was only significant for the late time window (p < 0.05, Bonferroni‐corrected, one‐sided). (b) Single‐subject results for the late time window. Eighty percent of participants showed a more negative correlation between distance to target‐level and striatum activation during gradual self‐regulation when receiving neurofeedback. Remark. Participants with black underline underwent feedback condition first and no‐feedback condition seconds. Abbreviations for mental tasks: IS = Inner speech, MO = mental orchestra, VM = visual motion imagery, MD = mental drawing, MS = mental sounds, MR = mental running

References

    1. Amano, K. , Shibata, K. , Kawato, M. , Sasaki, Y. , & Watanabe, T. (2016). Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback. Current Biology, 26(14), 1861–1866. 10.1016/j.cub.2016.05.014
    1. Balleine, B. W. , Delgado, M. R. , & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision‐making. Journal of Neuroscience, 27(31), 8161–8165. 10.1523/JNEUROSCI.1554-07.2007
    1. Bartra, O. , McGuire, J. T. , & Kable, J. W. (2013). The valuation system: A coordinate‐based meta‐analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427. 10.1016/j.neuroimage.2013.02.063
    1. Birbaumer, N. , Ruiz, S. , & Sitaram, R. (2013). Learned regulation of brain metabolism. Trends in Cognitive Sciences, 17(6), 295–302. 10.1016/j.tics.2013.04.009
    1. Boynton, G. M. , Engel, S. A. , Glover, G. H. , & Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. Journal of Neuroscience, 16(13), 4207–4221. 10.1523/JNEUROSCI.16-13-04207.1996
    1. Cai, W. , Chen, T. , Ryali, S. , Kochalka, J. , Li, C.‐S.‐R. , & Menon, V. (2015). Causal interactions within a frontal‐cingulate‐parietal network during cognitive control: Convergent evidence from a multisite–multitask investigation. Cerebral Cortex, 26(5), 2140–2153. 10.1093/cercor/bhv046
    1. Cardinal, R. N. (2006). Neural systems implicated in delayed and probabilistic reinforcement. Neural Networks, 19(8), 1277–1301. 10.1016/j.neunet.2006.03.004
    1. Caria, A. , Veit, R. , Sitaram, R. , Lotze, M. , Weiskopf, N. , Grodd, W. , & Birbaumer, N. (2007). Regulation of anterior insular cortex activity using real‐time fMRI. NeuroImage, 35(3), 1238–1246. 10.1016/j.neuroimage.2007.01.018
    1. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Erlbaum Associates.
    1. Davelaar, E. J. (2018). Mechanisms of neurofeedback: A computation‐theoretic approach. Neuroscience, 378, 175–188. 10.1016/j.neuroscience.2017.05.052
    1. DePasque Swanson, S. , & Tricomi, E. (2014). Goals and task difficulty expectations modulate striatal responses to feedback. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 610–620. 10.3758/s13415-014-0269-8
    1. Dobryakova, E. , & Tricomi, E. (2013). Basal ganglia engagement during feedback processing after a substantial delay. Cognitive, Affective, & Behavioral Neuroscience, 13(4), 725–736. 10.3758/s13415-013-0182-6
    1. El Hady, A. (2016). Closed loop neuroscience. London, UK: Academic Press.
    1. Emmert, K. , Kopel, R. , Koush, Y. , Maire, R. , Senn, P. , Van De Ville, D. , & Haller, S. (2017). Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real‐time fMRI‐A pilot study. NeuroImage: Clinical, 14, 97–104. 10.1016/j.nicl.2016.12.023
    1. Emmert, K. , Kopel, R. , Sulzer, J. , Brühl, A. B. , Berman, B. D. , Linden, D. E. , … Frank, S. (2016). Meta‐analysis of real‐time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? NeuroImage, 124, 806–812.
    1. Etkin, A. , Egner, T. , & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85–93. 10.1016/j.tics.2010.11.004
    1. Fetz, E. E. (2007). Volitional control of neural activity: Implications for brain–computer interfaces. The Journal of Physiology, 579(3), 571–579. 10.1113/jphysiol.2006.127142
    1. FitzGerald, T. H. , Schwartenbeck, P. , & Dolan, R. J. (2014). Reward‐related activity in ventral striatum is action contingent and modulated by behavioral relevance. Journal of Neuroscience, 34(4), 1271–1279. 10.1523/JNEUROSCI.4389-13.2014
    1. Gevensleben, H. , Holl, B. , Albrecht, B. , Schlamp, D. , Kratz, O. , Studer, P. , … Heinrich, H. (2009). Distinct EEG effects related to neurofeedback training in children with ADHD: A randomized controlled trial. International Journal of Psychophysiology, 74(2), 149–157. 10.1016/j.ijpsycho.2009.08.005
    1. Goldin, P. R. , McRae, K. , Ramel, W. , & Gross, J. J. (2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63(6), 577–586. 10.1016/j.biopsych.2007.05.031
    1. Grech, R. , Cassar, T. , Muscat, J. , Camilleri, K. P. , Fabri, S. G. , Zervakis, M. , … Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. Journal of Neuroengineering and Rehabilitation, 5(1), 25 10.1186/1743-0003-5-25
    1. Gustavo, B. , Soares, S. , & Paton, J. J. (2015). A scalable population code for time in the striatum. Current Biology, 25(9), 1113–1122. 10.1016/j.cub.2015.02.036
    1. Haber, S. N. , Fudge, J. L. , & McFarland, N. R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. Journal of Neuroscience, 20(6), 2369–2382. 10.1523/JNEUROSCI.20-06-02369.2000
    1. Haller, S. , Kopel, R. , Jhooti, P. , Haas, T. , Scharnowski, F. , Lovblad, K.‐O. , … Van De Ville, D. (2013). Dynamic reconfiguration of human brain functional networks through neurofeedback. NeuroImage, 81, 243–252. 10.1016/j.neuroimage.2013.05.019
    1. Hamilton, J. P. , Glover, G. H. , Hsu, J. J. , Johnson, R. F. , & Gotlib, I. H. (2011). Modulation of subgenual anterior cingulate cortex activity with real‐time neurofeedback. Human Brain Mapping, 32(1), 22–31. 10.1002/hbm.20997
    1. Haruno, M. , & Kawato, M. (2006). Heterarchical reinforcement‐learning model for integration of multiple cortico‐striatal loops: fMRI examination in stimulus‐action‐reward association learning. Neural Networks, 19(8), 1242–1254. 10.1016/j.neunet.2006.06.007
    1. Haruno, M. , Kuroda, T. , Doya, K. , Toyama, K. , Kimura, M. , Samejima, K. , … Kawato, M. (2004). A neural correlate of reward‐based behavioral learning in caudate nucleus: A functional magnetic resonance imaging study of a stochastic decision task. Journal of Neuroscience, 24(7), 1660–1665. 10.1523/JNEUROSCI.3417-03.2004
    1. Hiebert, N. M. , Vo, A. , Hampshire, A. , Owen, A. M. , Seergobin, K. N. , & MacDonald, P. A. (2014). Striatum in stimulus–response learning via feedback and in decision making. NeuroImage, 101, 448–457. 10.1016/j.neuroimage.2014.07.013
    1. Hommel, B. (1996). The cognitive representation of action: Automatic integration of perceived action effects. Psychological Research Psychologische Forschung, 59(3), 176–186. 10.1007/BF00425832
    1. Innocenti, G. M. , Dyrby, T. B. , Andersen, K. W. , Rouiller, E. M. , & Caminiti, R. (2016). The crossed projection to the striatum in two species of monkey and in humans: Behavioral and evolutionary significance. Cerebral Cortex, bhw161 10.1093/cercor/bhw161
    1. Jarbo, K. , & Verstynen, T. D. (2015). Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum. Journal of Neuroscience, 35(9), 3865–3878. 10.1523/JNEUROSCI.2636-14.2015
    1. Johnston, S. J. , Boehm, S. G. , Healy, D. , Goebel, R. , & Linden, D. E. (2010). Neurofeedback: A promising tool for the self‐regulation of emotion networks. NeuroImage, 49(1), 1066–1072. 10.1016/j.neuroimage.2009.07.056
    1. Jung, W. H. , Jang, J. H. , Park, J. W. , Kim, E. , Goo, E.‐H. , Im, O.‐S. , & Kwon, J. S. (2014). Unravelling the intrinsic functional organization of the human striatum: A parcellation and connectivity study based on resting‐state fMRI. PLoS ONE, 9(9), e106768 10.1371/journal.pone.0106768
    1. Kim, H. , Sul, J. H. , Huh, N. , Lee, D. , & Jung, M. W. (2009). Role of striatum in updating values of chosen actions. Journal of Neuroscience, 29(47), 14701–14712. 10.1523/JNEUROSCI.2728-09.2009
    1. Kjaer, T. W. , Bertelsen, C. , Piccini, P. , Brooks, D. , Alving, J. , & Lou, H. C. (2002). Increased dopamine tone during meditation‐induced change of consciousness. Cognitive Brain Research, 13(2), 255–259. 10.1016/S0926-6410(01)00106-9
    1. Kohrs, C. , Angenstein, N. , Scheich, H. , & Brechmann, A. (2012). Human striatum is differentially activated by delayed, omitted, and immediate registering feedback. Frontiers in Human Neuroscience, 6, 10.3389/fnhum.2012.00243.
    1. Lacadie, C. M. , Fulbright, R. K. , Rajeevan, N. , Constable, R. T. , & Papademetris, X. (2008). More accurate Talairach coordinates for neuroimaging using non‐linear registration. NeuroImage, 42(2), 717–725. 10.1016/j.neuroimage.2008.04.240
    1. Lacroix, J. M. , & Gowen, A. H. (1981). The acquisition of autonomic control through biofeedback: Some tests of discrimination theory. Psychophysiology, 18(5), 559–572. 10.1111/j.1469-8986.1981.tb01826.x
    1. MacDonald, A. W. , Cohen, J. D. , Stenger, V. A. , & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–1838.
    1. Marchesotti, S. , Martuzzi, R. , Schurger, A. , Blefari, M. L. , del Millán, J. R. , Bleuler, H. , & Blanke, O. (2017). Cortical and subcortical mechanisms of brain‐machine interfaces. Human Brain Mapping, 38(6), 2971–2989. 10.1002/hbm.23566
    1. McCaig, R. G. , Dixon, M. , Keramatian, K. , Liu, I. , & Christoff, K. (2011). Improved modulation of rostrolateral prefrontal cortex using real‐time fMRI training and meta‐cognitive awareness. NeuroImage, 55(3), 1298–1305. 10.1016/j.neuroimage.2010.12.016
    1. McClure, S. M. , Berns, G. S. , & Montague, P. R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron, 38(2), 339–346. 10.1016/S0896-6273(03)00154-5
    1. Megumi, F. , Yamashita, A. , Kawato, M. , & Imamizu, H. (2015). Functional MRI neurofeedback training on connectivity between two regions induces long‐lasting changes in intrinsic functional network. Frontiers in Human Neuroscience, 9, 10.3389/fnhum.2015.00160
    1. Morris, S. B. , & DeShon, R. P. (2002). Combining effect size estimates in meta‐analysis with repeated measures and independent‐groups designs. Psychological Methods, 7(1), 105 10.1037/1082-989X.7.1.105
    1. Mottaz, A. , Solcà, M. , Magnin, C. , Corbet, T. , Schnider, A. , & Guggisberg, A. G. (2015). Neurofeedback training of alpha‐band coherence enhances motor performance. Clinical Neurophysiology, 126(9), 1754–1760. 10.1016/j.clinph.2014.11.023
    1. O'Doherty, J. , Dayan, P. , Schultz, J. , Deichmann, R. , Friston, K. , & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669), 452 10.1126/science.1094285
    1. Pagnoni, G. , Zink, C. F. , Montague, P. R. , & Berns, G. S. (2002). Activity in human ventral striatum locked to errors of reward prediction. NatureNeuroscience, 5(2), 97 10.1038/nn802
    1. Potter, S. M. , El Hady, A. , & Fetz, E. E. (2014). Closed‐loop neuroscience and neuroengineering. Frontiers in Neural Circuits, 8, 115 10.3389/fncir.2014.00115
    1. Ramot, M. , Grossman, S. , Friedman, D. , & Malach, R. (2016). Covert neurofeedback without awareness shapes cortical network spontaneous connectivity. Proceedings of the National Academy of Sciences, 113(17), E2413–E2420. 10.1073/pnas.1516857113
    1. Robbins, T. W. , & Everitt, B. J. (1996). Neurobehavioural mechanisms of reward and motivation. Current Opinion in Neurobiology, 6(2), 228–236. 10.1016/S0959-4388(96)80077-8
    1. Samejima, K. , Ueda, Y. , Doya, K. , & Kimura, M. (2005). Representation of action‐specific reward values in the striatum. Science, 310(5752), 1337–1340. 10.1126/science.1115270
    1. Scheinost, D. , Stoica, T. , Saksa, J. , Papademetris, X. , Constable, R. , Pittenger, C. , & Hampson, M. (2013). Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting‐state connectivity. Translational Psychiatry, 3(4), e250 10.1038/tp.2013.24
    1. Schooler, J. W. , Smallwood, J. , Christoff, K. , Handy, T. C. , Reichle, E. D. , & Sayette, M. A. (2011). Meta‐awareness, perceptual decoupling and the wandering mind. Trends in Cognitive Sciences, 15(7), 319–326. 10.1016/j.tics.2011.05.006
    1. Sitaram, R. , Ros, T. , Stoeckel, L. , Haller, S. , Scharnowski, F. , Lewis‐Peacock, J. , … Oblak, E. (2017). Closed‐loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86–100. 10.1038/nrn.2016.164
    1. Sleezer, B. J. , & Hayden, B. Y. (2016). Differential contributions of ventral and dorsal striatum to early and late phases of cognitive set reconfiguration. Journal of Cognitive Neuroscience. 10.1162/jocn_a_01011
    1. Sorger, B. , Kamp, T. , Weiskopf, N. , Peters, J. C. , & Goebel, R. (2018). When the brain takes ‘BOLD'steps: Real‐time fMRI neurofeedback can further enhance the ability to gradually self‐regulate regional brain activation. Neuroscience.378, 71–88. 10.1016/j.neuroscience.2016.09.026
    1. Stalnaker, T. A. , Calhoon, G. G. , Ogawa, M. , Roesch, M. R. , & Schoenbaum, G. (2012). Reward prediction error signaling in posterior dorsomedial striatum is action specific. Journal of Neuroscience, 32(30), 10296–10305. 10.1523/JNEUROSCI.0832-12.2012
    1. Subramanian, L. , Hindle, J. V. , Johnston, S. , Roberts, M. V. , Husain, M. , Goebel, R. , & Linden, D. (2011). Real‐time functional magnetic resonance imaging neurofeedback for treatment of Parkinson's disease. Journal of Neuroscience, 31(45), 16309–16317. 10.1523/JNEUROSCI.3498-11.2011
    1. Talairach, J. , & Tournoux, P. (1988). Co‐planar stereotaxic atlas of the human brain In 3‐Dimensional proportional system: an approach to cerebral imaging. Stuttgart, Germany: G. Thieme.
    1. Tanaka, S. C. , Balleine, B. W. , & O'Doherty, J. P. (2008). Calculating consequences: Brain systems that encode the causal effects of actions. Journal of Neuroscience, 28(26), 6750–6755. 10.1523/JNEUROSCI.1808-08.2008
    1. Tanaka, S. C. , Doya, K. , Okada, G. , Ueda, K. , Okamoto, Y. , & Yamawaki, S. (2004). Prediction of immediate and future rewards differentially recruits cortico‐basal ganglia loops. NatureNeuroscience, 7(8), 887 10.1038/nn1279
    1. Tang, Y.‐Y. , Hölzel, B. K. , & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews Neuroscience, 16(4), 213–225. 10.1038/nrn3916
    1. Tricomi, E. M. , Balleine, B. W. , & O'Doherty, J. P. (2009). A specific role for posterior dorsolateral striatum in human habit learning. European Journal of Neuroscience, 29(11), 2225–2232. 10.1111/j.1460-9568.2009.06796.x
    1. Tricomi, E. M. , Delgado, M. R. , & Fiez, J. A. (2004). Modulation of caudate activity by action contingency. Neuron, 41(2), 281–292. 10.1016/S0896-6273(03)00848-1
    1. Valentin, V. V. , Dickinson, A. , & O'Doherty, J. P. (2007). Determining the neural substrates of goal‐directed learning in the human brain. Journal of Neuroscience, 27(15), 4019–4026. 10.1523/JNEUROSCI.0564-07.2007
    1. Weissman, D. H. , Gopalakrishnan, A. , Hazlett, C. , & Woldorff, M. (2004). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral Cortex, 15(2), 229–237. 10.1093/cercor/bhh125
    1. Young, K. D. , Siegle, G. J. , Zotev, V. , Phillips, R. , Misaki, M. , Yuan, H. , … Bodurka, J. (2017). Randomized clinical trial of real‐time fMRI amygdala neurofeedback for major depressive disorder: Effects on symptoms and autobiographical memory recall. American Journal of Psychiatry, 174(8), 748–755. 10.1176/appi.ajp.2017.16060637
    1. Zilverstand, A. , Sorger, B. , Sarkheil, P. , & Goebel, R. (2015). fMRI neurofeedback facilitates anxiety regulation in females with spider phobia. Frontiers in Behavioral Neuroscience, 9, 148 10.3389/fnbeh.2015.00148
    1. Zilverstand, A. , Sorger, B. , Slaats‐Willemse, D. , Kan, C. C. , Goebel, R. , & Buitelaar, J. K. (2017). fMRI neurofeedback training for increasing anterior cingulate cortex activation in adult attention deficit hyperactivity disorder. An exploratory randomized, single‐blinded study. PLoS ONE, 12(1), e0170795.

Source: PubMed

3
Subskrybuj