B-type natriuretic peptide trumps other prognostic markers in patients assessed for coronary disease

Dipak Kotecha, Marcus D Flather, Dan Atar, Peter Collins, John Pepper, Elizabeth Jenkins, Christopher M Reid, David Eccleston, Alternative Risk Markers in Coronary Artery Disease (ARM-CAD) Study, Dipak Kotecha, Marcus D Flather, Dan Atar, Peter Collins, John Pepper, Elizabeth Jenkins, Christopher M Reid, David Eccleston, Alternative Risk Markers in Coronary Artery Disease (ARM-CAD) Study

Abstract

Background: Risk prediction for patients with suspected coronary artery disease is complex due to the common occurrence of prior cardiovascular disease and extensive risk modification in primary care. Numerous markers have the potential to predict prognosis and guide management, but we currently lack robust 'real-world' evidence for their use.

Methods: Prospective, multicentre observational study of consecutive patients referred for elective coronary angiography. Clinicians were blinded to all risk assessments, consisting of conventional factors, radial artery pulse wave analysis, 5-minute heart rate variability, high-sensitivity C-reactive protein and B-type natriuretic peptide (BNP). Blinded, independent adjudication was performed for all-cause mortality and the composite of death, myocardial infarction or stroke, analysed with Cox proportional hazards regression.

Results: Five hundred twenty-two patients were assessed with median age 66 years and 21% prior revascularization. Median baseline left ventricular ejection fraction was 64%, and 62% had ≥ 50% stenosis on angiography. During 5.0 years median follow-up, 30% underwent percutaneous and 16% surgical revascularization. In multivariate analysis, only age and BNP were independently associated with outcomes. The adjusted hazard ratio per log unit increase in BNP was 2.15 for mortality (95% CI 1.45-3.19; p = 0.0001) and 1.27 for composite events (1.04-1.54; p = 0.018). Patients with baseline BNP > 100 pg/mL had substantially higher mortality and composite events (20.9% and 32.2%) than those with BNP ≤ 100 pg/mL (5.6% and 15.5%). BNP improved both classification and discrimination of outcomes (p ≤ 0.003), regardless of left ventricular systolic function. Conversely, high-sensitivity C-reactive protein, pulse wave analysis and heart rate variability were unrelated to prognosis at 5 years after risk modification and treatment of coronary disease.

Conclusions: Conventional risk factors and other markers of arterial compliance, inflammation and autonomic function have limited value for prediction of outcomes in risk-modified patients assessed for coronary disease. BNP can independently identify patients with subtle impairment of cardiac function that might benefit from more intensive management.

Trial registration: Clinicaltrials.gov, NCT00403351 Registered on 22 November 2006.

Keywords: B-type natriuretic peptide; Coronary angiography; Coronary artery disease; Mortality; Risk.

Conflict of interest statement

Ethics approval and consent to participate

The ARM-CAD Study was approved by Ethics Committees from Monash University, Melbourne, Australia (2006/831MC) and The Alfred Melbourne, Australia (38/07).

All patients provided written informed consent.

Consent for publication

Not applicable – all original data.

Competing interests

MDF reports grants from Novartis and personal fees from AstraZeneca, Novartis and Pfizer, all outside the submitted work. DA has received speakers’ honoraria from Roche Diagnostics and Siemens Diagnostics, outside the submitted work. PC reports personal speaking honoraria from Menarini, AstraZenica, Bayer, Itamar Medical, Abbott and Ferring Pharmaceuticals, all outside the submitted work. The other authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flowchart for the ARM-CAD study. Includes independently adjudicated events subdivided by baseline BNP level. BNP, B-type natriuretic peptide; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting (PCI and CABG are not mutually exclusive)
Fig. 2
Fig. 2
Kaplan Meier curves for death, myocardial infarction or stroke. Apart from coronary angiogram results, clinicians remained blinded to all other baseline risk markers. p values are a chi-squared log-rank test for trend performed at a landmark censoring of 1 year and at the median 5-year follow-up. Corresponding p values for all-cause mortality alone at 5-year follow-up are a BNP p = 0.001, b hs-CRP p = 0.27, c central augmentation pressure p = 0.38, d low/high-frequency HRV p = 0.30, e Framingham risk p = 0.026, f Angiographic coronary disease p = 0.09. *Post hoc exclusion of patients with atrial arrhythmias at baseline or follow-up had no impact on results. †Post hoc exclusion of patients with any revascularization resulted in ptrend = 0.029 for death, MI or CVA at 5-year follow-up, and 0.18 for mortality alone. CAD, coronary artery disease
Fig. 3
Fig. 3
Kaplan-Meier adverse event curves according to the pre-specified BNP cut-point of 100 pg/mL for a: all-cause mortality; and b: death, MI or stroke. BNP, B-type natriuretic peptide; MI, myocardial infarction
Fig. 4
Fig. 4
Risk contour map for adjusted predicted mortality according to age and BNP. Example: 75-year-old patient with a BNP of 25 pg/mL has a predicted 5-year mortality of 0–5%, compared to 10–20% in a patient of the same age with a BNP of 200 pg/mL. Note that risk estimates are based on the ARM-CAD cohort of patients with extensive modification of risk factors and concomitant disease, revascularization as required, and highly involved secondary care physicians

References

    1. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837–1847. doi: 10.1161/01.CIR.97.18.1837.
    1. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24:987–1003. doi: 10.1016/S0195-668X(03)00114-3.
    1. Kotecha D, Flather M, McGrady M, Pepper J, New G, Krum H, et al. Contemporary predictors of coronary artery disease in patients referred for angiography. Eur J Cardiovasc Prev Rehabil. 2010;17:280–288. doi: 10.1097/HJR.0b013e3283310108.
    1. Halkin A, Singh M, Nikolsky E, Grines CL, Tcheng JE, Garcia E, et al. Prediction of mortality after primary percutaneous coronary intervention for acute myocardial infarction: the CADILLAC risk score. J Am Coll Cardiol. 2005;45:1397–1405. doi: 10.1016/j.jacc.2005.01.041.
    1. Bottle A, Mozid A, Grocott HP, Walters MR, Lees KR, Aylin P, et al. Preoperative risk factors in 10 418 patients with prior myocardial infarction and 5241 patients with prior unstable angina undergoing elective coronary artery bypass graft surgery. Br J Anaesth. 2013;111:417–423. doi: 10.1093/bja/aet107.
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–2200. doi: 10.1093/eurheartj/ehw128.
    1. Palazzuoli A, Caputo M, Fineschi M, Navarri R, Calabro A, Cameli M, et al. B-type natriuretic peptide as an independent predictor of coronary disease extension in non-ST elevation coronary syndromes with preserved systolic function. Eur J Prev Cardiol. 2012;19:366–373. doi: 10.1177/1741826711406608.
    1. Kotecha D, New G, Collins P, Eccleston D, Krum H, Pepper J, et al. Radial artery pulse wave analysis for non-invasive assessment of coronary artery disease. Int J Cardiol. 2013;167:917–924. doi: 10.1016/j.ijcard.2012.03.098.
    1. Kotecha D, New G, Flather MD, Eccleston D, Pepper J, Krum H. Five-minute heart rate variability can predict obstructive angiographic coronary disease. Heart. 2012;98:395–401. doi: 10.1136/heartjnl-2011-300033.
    1. Compostella L, Lakusic N, Compostella C, Truong LV, Iliceto S, Bellotto F. Does heart rate variability correlate with long-term prognosis in myocardial infarction patients treated by early revascularization? World J Cardiol. 2017;9:27–38. doi: 10.4330/wjc.v9.i1.27.
    1. Yousuf O, Mohanty BD, Martin SS, Joshi PH, Blaha MJ, Nasir K, et al. High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol. 2013;62:397–408. doi: 10.1016/j.jacc.2013.05.016.
    1. Newson RB. Comparing the predictive powers of survival models using Harrell’s C or Somers’ D. Stata J. 2004;10:339–358. doi: 10.1177/1536867X1001000303.
    1. Sundstrom J, Byberg L, Gedeborg R, Michaelsson K, Berglund L. Useful tests of usefulness of new risk factors: tools for assessing reclassification and discrimination. Scand J Public Health. 2011;39:439–441. doi: 10.1177/1403494810396556.
    1. Fox KA, Dabbous OH, Goldberg RJ, Pieper KS, Eagle KA, Van de Werf F, et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE) BMJ. 2006;333:1091. doi: 10.1136/bmj.38985.646481.55.
    1. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113:1213–1225. doi: 10.1161/CIRCULATIONAHA.105.606962.
    1. Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension. 2007;50:197–203. doi: 10.1161/HYPERTENSIONAHA.107.089078.
    1. Weber T, Auer J, O'Rourke MF, Kvas E, Lassnig E, Lamm G, et al. Increased arterial wave reflections predict severe cardiovascular events in patients undergoing percutaneous coronary interventions. Eur Heart J. 2005;26:2657–2663. doi: 10.1093/eurheartj/ehi504.
    1. Shah NK, Smith SM, Nichols WW, Lo MC, Ashfaq U, Satish P, et al. Carvedilol reduces aortic wave reflection and improves left ventricular/vascular coupling: a comparison with atenolol (CENTRAL study) J Clin Hypertens (Greenwich) 2011;13:917–924. doi: 10.1111/j.1751-7176.2011.00549.x.
    1. Hillebrand S, Gast KB, de Mutsert R, Swenne CA, Jukema JW, Middeldorp S, et al. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and dose-response meta-regression. Europace. 2013;15:742–749. doi: 10.1093/europace/eus341.
    1. Bigger JT, Fleiss JL, Rolnitzky LM, Steinman RC. The ability of several short-term measures of RR variability to predict mortality after myocardial infarction. Circulation. 1993;88:927–934. doi: 10.1161/01.CIR.88.3.927.
    1. Odemuyiwa O, Malik M, Farrell T, Bashir Y, Poloniecki J, Camm J. Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am J Cardiol. 1991;68:434–439. doi: 10.1016/0002-9149(91)90774-F.
    1. Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart) Circulation. 1998;98:1510–1516. doi: 10.1161/01.CIR.98.15.1510.
    1. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339:321–328. doi: 10.1056/NEJM199807303390507.
    1. von Lueder TG, Kotecha D, Atar D, Hopper I. Neurohormonal blockade in heart failure. Cardiac Fail Rev. 2016;3:19–24. doi: 10.15420/cfr.2016:22:2.
    1. de Lemos JA, Morrow DA, Bentley JH, Omland T, Sabatine MS, McCabe CH, et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 2001;345:1014–1021. doi: 10.1056/NEJMoa011053.
    1. Kragelund C, Gronning B, Kober L, Hildebrandt P, Steffensen R. N-terminal pro-B-type natriuretic peptide and long-term mortality in stable coronary heart disease. N Engl J Med. 2005;352:666–675. doi: 10.1056/NEJMoa042330.
    1. Schnabel R, Lubos E, Rupprecht HJ, Espinola-Klein C, Bickel C, Lackner KJ, et al. B-type natriuretic peptide and the risk of cardiovascular events and death in patients with stable angina: results from the AtheroGene study. J Am Coll Cardiol. 2006;47:552–558. doi: 10.1016/j.jacc.2005.09.039.
    1. Di Angelantonio E, Chowdhury R, Sarwar N, Ray KK, Gobin R, Saleheen D, et al. B-type natriuretic peptides and cardiovascular risk: systematic review and meta-analysis of 40 prospective studies. Circulation. 2009;120:2177–2187. doi: 10.1161/CIRCULATIONAHA.109.884866.
    1. Jernberg T, James S, Lindahl B, Johnston N, Stridsberg M, Venge P, et al. Natriuretic peptides in unstable coronary artery disease. Eur Heart J. 2004;25:1486–1493. doi: 10.1016/j.ehj.2004.06.017.
    1. McKie PM, Cataliotti A, Lahr BD, Martin FL, Redfield MM, Bailey KR, et al. The prognostic value of N-terminal pro-B-type natriuretic peptide for death and cardiovascular events in healthy normal and stage A/B heart failure subjects. J Am Coll Cardiol. 2010;55:2140–2147. doi: 10.1016/j.jacc.2010.01.031.
    1. Sabatine MS, Morrow DA, de Lemos JA, Omland T, Desai MY, Tanasijevic M, et al. Acute changes in circulating natriuretic peptide levels in relation to myocardial ischemia. J Am Coll Cardiol. 2004;44:1988–1995. doi: 10.1016/j.jacc.2004.07.057.
    1. Palazzuoli A, Poldermans D, Capobianco S, Giannotti G, Iovine F, Campagna MS, et al. Rise and fall of B-type natriuretic peptide levels in patients with coronary artery disease and normal left ventricular function after cardiac revascularization. Coron Artery Dis. 2006;17:419–423. doi: 10.1097/00019501-200608000-00004.
    1. Redfors B, Chen S, Crowley A, Ben-Yehuda O, Gersh BJ, Lembo NJ, et al. B-type natriuretic peptide assessment in patients undergoing revascularization for left main coronary artery disease. Circulation. 2018;138:469–478. doi: 10.1161/CIRCULATIONAHA.118.033631.
    1. Richards M, Nicholls MG, Espiner EA, Lainchbury JG, Troughton RW, Elliott J, et al. Comparison of B-type natriuretic peptides for assessment of cardiac function and prognosis in stable ischemic heart disease. J Am Coll Cardiol. 2006;47:52–60. doi: 10.1016/j.jacc.2005.06.085.
    1. Berendes E, Schmidt C, Van Aken H, Hartlage MG, Rothenburger M, Wirtz S, et al. A-type and B-type natriuretic peptides in cardiac surgical procedures. Anesth Analg. 2004;98:11–19. doi: 10.1213/01.ANE.0000093249.35075.F1.

Source: PubMed

3
Subskrybuj