Effect of the Rehabilitation Program, ReStOre, on Serum Biomarkers in a Randomized Control Trial of Esophagogastric Cancer Survivors

Susan A Kennedy, Stephanie L Annett, Margaret R Dunne, Fiona Boland, Linda M O'Neill, Emer M Guinan, Suzanne L Doyle, Emma K Foley, Jessie A Elliott, Conor F Murphy, Annemarie E Bennett, Michelle Carey, Daniel Hillary, Tracy Robson, John V Reynolds, Juliette Hussey, Jacintha O'Sullivan, Susan A Kennedy, Stephanie L Annett, Margaret R Dunne, Fiona Boland, Linda M O'Neill, Emer M Guinan, Suzanne L Doyle, Emma K Foley, Jessie A Elliott, Conor F Murphy, Annemarie E Bennett, Michelle Carey, Daniel Hillary, Tracy Robson, John V Reynolds, Juliette Hussey, Jacintha O'Sullivan

Abstract

Background: The Rehabilitation Strategies Following Esophagogastric cancer (ReStOre) randomized control trial demonstrated a significant improvement in cardiorespiratory fitness of esophagogastric cancer survivors. This follow-up, exploratory study analyzed the biological effect of exercise intervention on levels of 55 serum proteins, encompassing mediators of angiogenesis, inflammation, and vascular injury, from participants on the ReStOre trial.

Methods: Patients >6 months disease free from esophagogastric cancer were randomized to usual care or the 12-week ReStOre program (exercise training, dietary counselling, and multidisciplinary education). Serum was collected at baseline (T0), post-intervention (T1), and at 3-month follow up (T2). Serum biomarkers were quantified by enzyme-linked immunosorbent assay (ELISA).

Results: Thirty-seven patients participated in this study; 17 in the control arm and 20 in the intervention arm. Exercise intervention resulted in significant alterations in the level of expression of serum IP-10 (mean difference (MD): 38.02 (95% CI: 0.69 to 75.35)), IL-27 (MD: 249.48 (95% CI: 22.43 to 476.53)), and the vascular injury biomarkers, ICAM-1 (MD: 1.05 (95% CI: 1.07 to 1.66)), and VCAM-1 (MD: 1.51 (95% CI: 1.04 to 2.14)) at T1. A significant increase in eotaxin-3 (MD: 2.59 (95% CI: 0.23 to 4.96)), IL-15 (MD: 0.27 (95% CI: 0 to 0.54)) and decrease in bFGF (MD: 1.62 (95% CI: -2.99 to 0.26)) expression was observed between control and intervention cohorts at T2 (p<0.05).

Conclusions: Exercise intervention significantly altered the expression of a number of serum biomarkers in disease-free patients who had prior treatment for esophagogastric cancer.

Impact: Exercise rehabilitation causes a significant biological effect on serum biomarkers in esophagogastric cancer survivors.

Clinical trial registration: ClinicalTrials.gov (NCT03314311).

Keywords: biomarker analysis; cancer rehabilitation; cancer survivorship; cardiorespiratory fitness; esophagogastric cancer; exercise training; multidisciplinary rehabilitation treatment.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Kennedy, Annett, Dunne, Boland, O’Neill, Guinan, Doyle, Foley, Elliott, Murphy, Bennett, Carey, Hillary, Robson, Reynolds, Hussey and O’Sullivan.

Figures

Figure 1
Figure 1
Multiplex ELISA analysis of Vascular injury panel. Data at immediately post 12-week intervention (Time 1; T1) and at 3-month follow-up (Time 2; T2) was analyzed using linear regression models, adjusting for baseline values (T0). A significant increase in serum (A) ICAM-1 and (B) VCAM-1 expression was observed at T1 (*p ≤ 0.05).
Figure 2
Figure 2
Exercise intervention increases IP-10 and Eotaxin–3 expression. Data at immediately post 12-week intervention (Time 1; T1) and at 3-month follow-up (Time 2; T2) was analyzed using linear regression models, adjusting for baseline values (T0). A significant increase in serum (A) IP-10 expression was observed at T1 between control and intervention cohorts while a significant increase in (B) Eotaxin-3 was observed at T2 (*p ≤ 0.05).
Figure 3
Figure 3
Exercise intervention increases IL-27 expression at T1. Data at immediately post 12-week intervention (Time 1; T1) and at 3-month follow-up (Time 2; T2) was analyzed using linear regression models, adjusting for baseline values (T0). A significant increase in serum IL-27 expression was observed at T1 between control and intervention cohorts (*p ≤ 0.05).
Figure 4
Figure 4
Exercise intervention decreases bFGF expression at T2. Data at immediately post 12-week intervention (Time 1; T1) and at 3-month follow-up (Time 2; T2) was analyzed using linear regression models, adjusting for baseline values (T0). A significant decrease in serum bFGF expression was observed at T2 between control and intervention cohorts (*p ≤ 0.05).
Figure 5
Figure 5
Exercise intervention increases IL-15 expression at T2. Data at immediately post 12-week intervention (Time 1; T1) and at 3-month follow-up (Time 2; T2) was analyzed using linear regression models, adjusting for baseline values (T0). A significant increase in serum IL-15 expression was observed at T2 between control and intervention cohorts (*p ≤ 0.05).

References

    1. Campbell KL, Winters-Stone KM, Wiskemann J, May AM, Schwartz AL, Courneya KS, et al. . Exercise Guidelines for Cancer Survivors: Consensus Statement From International Multidisciplinary Roundtable. Med Sci Sports Exerc (2019) 51(11):2375–90. doi: 10.1249/MSS.0000000000002116
    1. Schmitz KH, Campbell AM, Stuiver MM, Pinto BM, Schwartz AL, Morris GS, et al. . Exercise Is Medicine in Oncology: Engaging Clinicians to Help Patients Move Through Cancer. CA Cancer J Clin (2019) 69(6):468–84. doi: 10.3322/caac.21579
    1. Patel AV, Friedenreich CM, Moore SC, Hayes SC, Silver JK, Campbell KL, et al. . American College of Sports Medicine Roundtable Report on Physical Activity, Sedentary Behavior, and Cancer Prevention and Control. Med Sci Sports Exerc (2019) 51(11):2391–402. doi: 10.1249/MSS.0000000000002117
    1. Smyth EC, Lagergren J, Fitzgerald RC, Lordick F, Shah MA, Lagergren P, et al. . Oesophageal Cancer. Nat Rev Dis Primers (2017) 3:17048. doi: 10.1038/nrdp.2017.48
    1. Anandavadivelan P, Lagergren P. Cachexia in Patients With Oesophageal Cancer. Nat Rev Clin Oncol (2016) 13(3):185–98. doi: 10.1038/nrclinonc.2015.200
    1. Blazeby JM, Sanford E, Falk SJ, Alderson D, Donovan JL. Health-Related Quality of Life During Neoadjuvant Treatment and Surgery for Localized Esophageal Carcinoma. Cancer (2005) 103(9):1791–9. doi: 10.1002/cncr.20980
    1. Rees J, Hurt CN, Gollins S, Mukherjee S, Maughan T, Falk SJ, et al. . Patient-Reported Outcomes During and After Definitive Chemoradiotherapy for Oesophageal Cancer. Br J Cancer (2015) 113(4):603–10. doi: 10.1038/bjc.2015.258
    1. Rutegard M, Lagergren J, Rouvelas I, Lindblad M, Blazeby JM, Lagergren P. Population-Based Study of Surgical Factors in Relation to Health-Related Quality of Life After Oesophageal Cancer Resection. Br J Surg (2008) 95(5):592–601. doi: 10.1002/bjs.6021
    1. Wainwright D, Donovan JL, Kavadas V, Cramer H, Blazeby JM. Remapping the Body: Learning to Eat Again After Surgery for Esophageal Cancer. Qual Health Res (2007) 17(6):759–71. doi: 10.1177/1049732307302021
    1. Gannon JA, Guinan EM, Doyle SL, Beddy P, Reynolds JV, Hussey J. Reduced Fitness and Physical Functioning Are Long-Term Sequelae After Curative Treatment for Esophageal Cancer: A Matched Control Study. Dis Esophagus (2017) 30(8):1–7. doi: 10.1093/dote/dox018
    1. Myers J, McAuley P, Lavie CJ, Despres JP, Arena R, Kokkinos P. Physical Activity and Cardiorespiratory Fitness as Major Markers of Cardiovascular Risk: Their Independent and Interwoven Importance to Health Status. Prog Cardiovasc Dis (2015) 57(4):306–14. doi: 10.1016/j.pcad.2014.09.011
    1. O’Neill L GE, Doyle SL, Elliott JA, O’Sullivan J, Reynolds JV, Hussey J. Rehabilitation Strategies Following Esophageal Cancer (the ReStOre Trial): A Feasibility Study. Dis Esophagus (2017) 30(5):1–8. doi: 10.1093/dote/dow012
    1. O’Neill LM, Guinan E, Doyle SL, Bennett AE, Murphy C, Elliott JA, et al. . The RESTORE Randomized Controlled Trial: Impact of a Multidisciplinary Rehabilitative Program on Cardiorespiratory Fitness in Esophagogastric Cancer Survivorship. Ann Surg (2018) 268(5):747–55. doi: 10.1097/SLA.0000000000002895
    1. O’Sullivan KE, Phelan JJ, O’Hanlon C, Lysaght J, O’Sullivan JN, Reynolds JV. The Role of Inflammation in Cancer of the Esophagus. Expert Rev Gastroenterol Hepatol (2014) 8(7):749–60. doi: 10.1586/17474124.2014.913478
    1. Seruga B, Zhang H, Bernstein LJ, Tannock IF. Cytokines and Their Relationship to the Symptoms and Outcome of Cancer. Nat Rev Cancer (2008) 8(11):887–99. doi: 10.1038/nrc2507
    1. Alfano CM, Imayama I, Neuhouser ML, Kiecolt-Glaser JK, Smith AW, Meeske K, et al. . Fatigue, Inflammation, and Omega-3 and Omega-6 Fatty Acid Intake Among Breast Cancer Survivors. J Clin Oncol (2012) 30(12):1280–7. doi: 10.1200/JCO.2011.36.4109
    1. Schubert C, Hong S, Natarajan L, Mills PJ, Dimsdale JE. The Association Between Fatigue and Inflammatory Marker Levels in Cancer Patients: A Quantitative Review. Brain Behav Immun (2007) 21(4):413–27. doi: 10.1016/j.bbi.2006.11.004
    1. Mishra SI, Scherer RW, Geigle PM, Berlanstein DR, Topaloglu O, Gotay CC, et al. . Exercise Interventions on Health-Related Quality of Life for Cancer Survivors. Cochrane Database Syst Rev (2012) 8:CD007566. doi: 10.1002/14651858.CD007566.pub2
    1. LaVoy EC, Fagundes CP, Dantzer R. Exercise, Inflammation, and Fatigue in Cancer Survivors. Exerc Immunol Rev (2016) 22:82–93.
    1. Guinan EM, Doyle SL, O’Neill L, Dunne MR, Foley EK, O’Sullivan J, et al. . Effects of a Multimodal Rehabilitation Programme on Inflammation and Oxidative Stress in Oesophageal Cancer Survivors: The ReStOre Feasibility Study. Support Care Cancer (2017) 25(3):749–56. doi: 10.1007/s00520-016-3455-0
    1. van Waart H, Stuiver MM, van Harten WH, Geleijn E, Kieffer JM, Buffart LM, et al. . Effect of Low-Intensity Physical Activity and Moderate- to High-Intensity Physical Exercise During Adjuvant Chemotherapy on Physical Fitness, Fatigue, and Chemotherapy Completion Rates: Results of the PACES Randomized Clinical Trial. J Clin Oncol (2015) 33(17):1918–27. doi: 10.1200/JCO.2014.59.1081
    1. Johnsson A, Demmelmaier I, Sjovall K, Wagner P, Olsson H, Tornberg AB. A Single Exercise Session Improves Side-Effects of Chemotherapy in Women With Breast Cancer: An Observational Study. BMC Cancer (2019) 19(1):1073. doi: 10.1186/s12885-019-6310-0
    1. Meneses-Echavez JF, Correa-Bautista JE, Gonzalez-Jimenez E, Schmidt Rio-Valle J, Elkins MR, Lobelo F, et al. . The Effect of Exercise Training on Mediators of Inflammation in Breast Cancer Survivors: A Systematic Review With Meta-Analysis. Cancer Epidemiol Biomarkers Prev (2016) 25(7):1009–17. doi: 10.1158/1055-9965.EPI-15-1061
    1. Ballard-Barbash R, Friedenreich CM, Courneya KS, Siddiqi SM, McTiernan A, Alfano CM. Physical Activity, Biomarkers, and Disease Outcomes in Cancer Survivors: A Systematic Review. J Natl Cancer Inst (2012) 104(11):815–40. doi: 10.1093/jnci/djs207
    1. Jones LW, Alfano CM. Exercise-Oncology Research: Past, Present, and Future. Acta Oncol (2013) 52(2):195–215. doi: 10.3109/0284186X.2012.742564
    1. Pallant J. SPSS Survival Manual. 6th ed. Berkshire, England: McGraw Hill; (2016).
    1. Wilkins LW. ACSM’s Guidelines for Exercise Testing and Prescription, 8 ed. Lippincott Williams and Wilkins; (2010).
    1. Laboratories ATSCoPSfCPF . ATS Statement: Guidelines for the Six-Minute Walk Test. Am J Respir Crit Care Med (2002) 166(1):111–7. doi: 10.1164/ajrccm.166.1.at1102
    1. Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular Mechanisms Linking Exercise to Cancer Prevention and Treatment. Cell Metab (2018) 27(1):10–21. doi: 10.1016/j.cmet.2017.09.015
    1. Schwartz AL, de Heer HD, Bea JW. Initiating Exercise Interventions to Promote Wellness in Cancer Patients and Survivors. Oncol (Williston Park) (2017) 31(10):711–7.
    1. Dethlefsen C, Pedersen KS, Hojman P. Every Exercise Bout Matters: Linking Systemic Exercise Responses to Breast Cancer Control. Breast Cancer Res Treat (2017) 162(3):399–408. doi: 10.1007/s10549-017-4129-4
    1. Garcia DO, Thomson CA. Physical Activity and Cancer Survivorship. Nutr Clin Pract (2014) 29(6):768–79. doi: 10.1177/0884533614551969
    1. van Vulpen JK, Siersema PD, van Hillegersberg R, Nieuwenhuijzen GAP, Kouwenhoven EA, Groenendijk RPR, et al. . Physical ExeRcise Following Esophageal Cancer Treatment (PERFECT) Study: Design of a Randomized Controlled Trial. BMC Cancer (2017) 17(1):552. doi: 10.1186/s12885-017-3542-8
    1. Stromberg A, Rullman E, Jansson E, Gustafsson T. Exercise-Induced Upregulation of Endothelial Adhesion Molecules in Human Skeletal Muscle and Number of Circulating Cells With Remodeling Properties. J Appl Physiol (1985) (2017) 122(5):1145–54. doi: 10.1152/japplphysiol.00956.2016
    1. Rader EP, Naimo MA, Ensey J, Baker BA. VCAM-1 Upregulation Accompanies Muscle Remodeling Following Resistance-Type Exercise in Snell Dwarf (Pit1(dw/dw)) Mice. Aging Cell (2018) 17(5):e12816. doi: 10.1111/acel.12816
    1. Brevetti G, De Caterina M, Martone VD, Ungaro B, Corrado F, Silvestro A, et al. . Exercise Increases Soluble Adhesion Molecules ICAM-1 and VCAM-1 in Patients With Intermittent Claudication. Clin Hemorheol Microcirc (2001) 24(3):193–9.
    1. Friedenreich CM, O’Reilly R, Shaw E, Stanczyk FZ, Yasui Y, Brenner DR, et al. . Inflammatory Marker Changes in Postmenopausal Women After a Year-Long Exercise Intervention Comparing High Versus Moderate Volumes. Cancer Prev Res (Phila) (2016) 9(2):196–203. doi: 10.1158/1940-6207.CAPR-15-0284
    1. Babina IS, Turner NC. Advances and Challenges in Targeting FGFR Signalling in Cancer. Nat Rev Cancer (2017) 17(5):318–32. doi: 10.1038/nrc.2017.8
    1. Han B, Liu J, Ma MJ, Zhao L. Clinicopathological Significance of Heparanase and Basic Fibroblast Growth Factor Expression in Human Esophageal Cancer. World J Gastroenterol (2005) 11(14):2188–92. doi: 10.3748/wjg.v11.i14.2188
    1. Breen EC, Johnson EC, Wagner H, Tseng HM, Sung LA, Wagner PD. Angiogenic Growth Factor mRNA Responses in Muscle to a Single Bout of Exercise. J Appl Physiol (1985) (1996) 81(1):355–61. doi: 10.1152/jappl.1996.81.1.355
    1. Seida A, Wada J, Kunitomi M, Tsuchiyama Y, Miyatake N, Fujii M, et al. . Serum bFGF Levels Are Reduced in Japanese Overweight Men and Restored by a 6-Month Exercise Education. Int J Obes Relat Metab Disord (2003) 27(11):1325–31. doi: 10.1038/sj.ijo.0802408
    1. Thorn M, Raab Y, Larsson A, Gerdin B, Hallgren R. Intestinal Mucosal Secretion of Basic Fibroblast Growth Factor in Patients With Ulcerative Colitis. Scand J Gastroenterol (2000) 35(4):408–12. doi: 10.1080/003655200750023985
    1. Bousvaros A, Zurakowski D, Fishman SJ, Keough K, Law T, Sun C, et al. . Serum Basic Fibroblast Growth Factor in Pediatric Crohn’s Disease. Implications for Wound Healing. Dig Dis Sci (1997) 42(2):378–86. doi: 10.1023/a:1018882322566
    1. Di Sabatino A, Ciccocioppo R, Armellini E, Morera R, Ricevuti L, Cazzola P, et al. . Serum bFGF and VEGF Correlate Respectively With Bowel Wall Thickness and Intramural Blood Flow in Crohn’s Disease. Inflammation Bowel Dis (2004) 10(5):573–7. doi: 10.1097/00054725-200409000-00011
    1. Wiktorowska-Owczarek A. The Effect of Diclofenac on Proliferation and Production of Growth Factors by Endothelial Cells (HMEC-1) Under Hypoxia and Inflammatory Conditions. Acta Pharm (2014) 64(1):131–8. doi: 10.2478/acph-2014-0006
    1. Zittermann SI, Issekutz AC. Basic Fibroblast Growth Factor (bFGF, FGF-2) Potentiates Leukocyte Recruitment to Inflammation by Enhancing Endothelial Adhesion Molecule Expression. Am J Pathol (2006) 168(3):835–46. doi: 10.2353/ajpath.2006.050479
    1. Lord RV, Park JM, Wickramasinghe K, DeMeester SR, Oberg S, Salonga D, et al. . Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor Expression in Esophageal Adenocarcinoma and Barrett Esophagus. J Thorac Cardiovasc Surg (2003) 125(2):246–53. doi: 10.1067/mtc.2003.203
    1. Mulligan AM, Raitman I, Feeley L, Pinnaduwage D, Nguyen LT, O’Malley FP, et al. . Tumoral Lymphocytic Infiltration and Expression of the Chemokine CXCL10 in Breast Cancers From the Ontario Familial Breast Cancer Registry. Clin Cancer Res (2013) 19(2):336–46. doi: 10.1158/1078-0432.CCR-11-3314
    1. Lunardi S, Jamieson NB, Lim SY, Griffiths KL, Carvalho-Gaspar M, Al-Assar O, et al. . IP-10/CXCL10 Induction in Human Pancreatic Cancer Stroma Influences Lymphocytes Recruitment and Correlates With Poor Survival. Oncotarget (2014) 5(22):11064–80. doi: 10.18632/oncotarget.2519
    1. Blank S, Nienhuser H, Dreikhausen L, Sisic L, Heger U, Ott K, et al. . Inflammatory Cytokines Are Associated With Response and Prognosis in Patients With Esophageal Cancer. Oncotarget (2017) 8(29):47518–32. doi: 10.18632/oncotarget.17671
    1. Mendelson M, Michallet AS, Monneret D, Perrin C, Esteve F, Lombard PR, et al. . Impact of Exercise Training Without Caloric Restriction on Inflammation, Insulin Resistance and Visceral Fat Mass in Obese Adolescents. Pediatr Obes (2015) 10(4):311–9. doi: 10.1111/ijpo.255
    1. Meyer JD, Hayney MS, Coe CL, Ninos CL, Barrett BP. Differential Reduction of IP-10 and C-Reactive Protein via Aerobic Exercise or Mindfulness-Based Stress-Reduction Training in a Large Randomized Controlled Trial. J Sport Exerc Psychol (2019) 41(2):96–106. doi: 10.1123/jsep.2018-0214
    1. Kazeem A, Olubayo A, Ganiyu A. Plasma Nitric Oxide and Acute Phase Proteins After Moderate and Prolonged Xercises. Iran J Basic Med Sci (2012) 15(1):602–7.
    1. Khazaei M. Chronic Low-Grade Inflammation After Exercise: Controversies. Iran J Basic Med Sci (2012) 15(5):1008–9.
    1. Crescioli C, Sottili M, Bonini P, Cosmi L, Chiarugi P, Romagnani P, et al. . Inflammatory Response in Human Skeletal Muscle Cells: CXCL10 as a Potential Therapeutic Target. Eur J Cell Biol (2012) 91(2):139–49. doi: 10.1016/j.ejcb.2011.09.011
    1. Fabbi M, Carbotti G, Ferrini S. Dual Roles of IL-27 in Cancer Biology and Immunotherapy. Mediators Inflamm (2017) 2017:3958069. doi: 10.1155/2017/3958069
    1. Kourko O, Seaver K, Odoardi N, Basta S, Gee K. IL-27, IL-30, and IL-35: A Cytokine Triumvirate in Cancer. Front Oncol (2019) 9:969. doi: 10.3389/fonc.2019.00969
    1. Diakowska D, Lewandowski A, Markocka-Maczka K, Grabowski K. Concentration of Serum Interleukin-27 Increase in Patients With Lymph Node Metastatic Gastroesophageal Cancer. Adv Clin Exp Med (2013) 22(5):683–91.
    1. Villarino AV, Huang E, Hunter CA. Understanding the Pro- and Anti-Inflammatory Properties of IL-27. J Immunol (2004) 173(2):715–20. doi: 10.4049/jimmunol.173.2.715
    1. Fix DK, Hardee JP, Gao S, VanderVeen BN, Velazquez KT, Carson JA. Role of Gp130 in Basal and Exercise-Trained Skeletal Muscle Mitochondrial Quality Control. J Appl Physiol (1985) (2018) 124(6):1456–70. doi: 10.1152/japplphysiol.01063.2017
    1. Zajkowska M, Mroczko B. Eotaxins and Their Receptor in Colorectal Cancer-A Literature Review. Cancers (Basel) (2020) 12(6):1383. doi: 10.3390/cancers12061383
    1. Lan Q, Lai W, Zeng Y, Liu L, Li S, Jin S, et al. . CCL26 Participates in the PRL-3-Induced Promotion of Colorectal Cancer Invasion by Stimulating Tumor-Associated Macrophage Infiltration. Mol Cancer Ther (2018) 17(1):276–89. doi: 10.1158/1535-7163.MCT-17-0507
    1. Ishida Y, Kido A, Akahane M, Kishi S, Tsukamoto S, Fujii H, et al. . Mesenchymal Stem Cells Up-Regulate the Invasive Potential of Prostate Cancer Cells via the Eotaxin-3/CCR3 Axis. Pathol Res Pract (2018) 214(9):1297–302. doi: 10.1016/j.prp.2018.06.012
    1. Gonzalez-Ruiz K, Correa-Bautista JE, Izquierdo M, Garcia-Hermoso A, Dominguez-Sanchez MA, Bustos-Cruz RH, et al. . Effects of an Exercise Program on Hepatic Metabolism, Hepatic Fat, and Cardiovascular Health in Overweight/Obese Adolescents From Bogota, Colombia (the HEPAFIT Study): Study Protocol for a Randomized Controlled Trial. Trials (2018) 19(1):330. doi: 10.1186/s13063-018-2721-5
    1. Nielsen AR, Mounier R, Plomgaard P, Mortensen OH, Penkowa M, Speerschneider T, et al. . Expression of Interleukin-15 in Human Skeletal Muscle Effect of Exercise and Muscle Fibre Type Composition. J Physiol (2007) 584(Pt 1):305–12. doi: 10.1113/jphysiol.2007.139618
    1. Ficek K, Cieszczyk P, Leznicka K, Kaczmarczyk M, Leonska-Duniec A. Novel Associations Between Interleukin-15 Polymorphisms and Post-Training Changes of Body Composition Parameters in Young Nonobese Women. Front Physiol (2019) 10:876. doi: 10.3389/fphys.2019.00876
    1. Riechman SE, Balasekaran G, Roth SM, Ferrell RE. Association of Interleukin-15 Protein and Interleukin-15 Receptor Genetic Variation With Resistance Exercise Training Responses. J Appl Physiol (1985) (2004) 97(6):2214–9. doi: 10.1152/japplphysiol.00491.2004
    1. Friedenreich CM, Neilson HK, Woolcott CG, Wang Q, Stanczyk FZ, McTiernan A, et al. . Inflammatory Marker Changes in a Yearlong Randomized Exercise Intervention Trial Among Postmenopausal Women. Cancer Prev Res (Phila) (2012) 5(1):98–108. doi: 10.1158/1940-6207.CAPR-11-0369
    1. O’Neill, Guinan E, Doyle S, Connolly D, O’Sullivan J, Bennett A, et al. . Rehabilitation Strategies Following Oesophagogastric and Hepatopancreaticobiliary Cancer (ReStOre II): A Protocol for a Randomized Controlled Trial. BMC Cancer (2020) 20(415):98–108. doi: 10.1186/s12885-020-06889-z

Source: PubMed

3
Subskrybuj