Spatiotemporal parameters and gait variability in people with psoriatic arthritis (PsA): a cross-sectional study

Roua Walha, Nathaly Gaudreault, Pierre Dagenais, Patrick Boissy, Roua Walha, Nathaly Gaudreault, Pierre Dagenais, Patrick Boissy

Abstract

Background: Foot involvement is a major manifestation of psoriatic arthritis (PsA) and can lead to severe levels of foot pain and disability and impaired functional mobility and quality of life. Gait spatiotemporal parameters (STPs) and gait variability, used as a clinical index of gait stability, have been associated with several adverse health outcomes, including risk of falling, functional decline, and mortality in a wide range of populations. Previous studies showed some alterations in STPs in people with PsA. However, gait variability and the relationships between STPs, gait variability and self-reported foot pain and disability have never been studied in these populations. Body-worn inertial measurement units (IMUs) are gaining interest in measuring gait parameters in clinical settings.

Objectives: To assess STPs and gait variability in people with PsA using IMUs, to explore their relationship with self-reported foot pain and function and to investigate the feasibility of using IMUs to discriminate patient groups based on gait speed-critical values.

Methods: Twenty-one participants with PsA (age: 53.9 ± 8.9 yrs.; median disease duration: 6 yrs) and 21 age- and sex-matched healthy participants (age 54.23 ± 9.3 yrs) were recruited. All the participants performed three 10-m walk test trials at their comfortable speed. STPs and gait variability were recorded and calculated using six body-worn IMUs and Mobility Lab software (APDM®). Foot pain and disability were assessed in participants with PsA using the foot function index (FFI).

Results: Cadence, gait speed, stride length, and swing phase were significantly lower, while double support was significantly higher, in the PsA group (p < 0.006). Strong correlations between STPs and the FFI total score were demonstrated (|r| > 0.57, p < 0.006). Gait variability was significantly increased in the PsA group, but it was not correlated with foot pain or function (p < 0.006). Using the IMUs, three subgroups of participants with PsA with clinically meaningful differences in self-reported foot pain and disability were discriminated.

Conclusion: STPs were significantly altered in participants with PsA, which could be associated with self-reported foot pain and disability. Future studies are required to confirm the increased gait variability highlighted in this study and its potential underlying causes. Using IMUs has been useful to objectively assess foot function in people with PsA.

Trial registration: ClinicalTrials.gov , NCT05075343 , Retrospectively registered on 29 September 2021.

Keywords: Foot function; Foot pain; Gait analysis; Gait variability; Psoriatic arthritis; Spatiotemporal parameters.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
A The gait cycle phases taken from an open access article [40]; B 10 m walk test (10MWT); C The Mobility Lab sensors placement
Fig. 2
Fig. 2
Correlation matrix of the relationships between spatiotemporal parameters, stride time variability and the foot function index
Fig. 3
Fig. 3
Scatter plots of the relationships between gait speed and the foot function index for PsA subgroups. PsA1 Participants with gait speed below 1.0 m/s, PsA2 participants with gait speed comprised between 1.0 and 1.2 m/s and PsA3 participants with gait speed higher than 1.2 m/s, FFI Foot function index. Δ1 Difference in the FFI total score between PsA2 and PsA3. Δ2 Difference in the FFI total score between PsA1 and PsA2

References

    1. Bezza A, Niamane R, Amine B, El Maghraoui A, Bensabbah R, Hajjaj-Hassouni N. Involvement of the foot in patients with psoriatic arthritis. A review of 26 cases. Joint Bone Spine. 2004;71(6):546–549. doi: 10.1016/j.jbspin.2002.06.001.
    1. Nordbø ECA, Aamodt G, Ihlebæk CM. Subjective health complaints in individuals with psoriasis and psoriatic arthritis: associations with the severity of the skin condition and illness perceptions - a cross-sectional study. Int J Behav Med. 2017;24(3):438–446. doi: 10.1007/s12529-017-9637-4.
    1. Hyslop E, McInnes IB, Woodburn J, Turner DE. Foot problems in psoriatic arthritis: high burden and low care provision. Ann Rheum Dis. 2010;69(5):928. doi: 10.1136/ard.2009.111971.
    1. Patience A, Helliwell PS, Siddle HJ. Focussing on the foot in psoriatic arthritis: pathology and management options. Expert Rev Clin Immunol. 2018;14(1):21–28. doi: 10.1080/1744666X.2018.1413351.
    1. Wilkins RA, Siddle HJ, Redmond AC, Helliwell PS. Plantar forefoot pressures in psoriatic arthritis-related dactylitis: an exploratory study. Clin Rheumatol. 2016;35(9):2333–2338. doi: 10.1007/s10067-016-3304-z.
    1. Polachek A, Li S, Chandran V, Gladman DD. Clinical Enthesitis in a prospective longitudinal psoriatic arthritis cohort: incidence, prevalence, characteristics, and outcome. Arthritis Care Res. 2017;69(11):1685–1691. doi: 10.1002/acr.23174.
    1. Turner DE, Hyslop E, Barn R, McInnes IB, Steultjens MPM, Woodburn J. Metatarsophalangeal joint pain in psoriatic arthritis: a cross-sectional study. Rheumatol Oxf Engl. 2014;53(4):737–740. doi: 10.1093/rheumatology/ket435.
    1. Kaeley GS, Eder L, Aydin SZ, Gutierrez M, Bakewell C. Dactylitis: a hallmark of psoriatic arthritis. Semin Arthritis Rheum. 2018;48(2):263–273. doi: 10.1016/j.semarthrit.2018.02.002.
    1. Carter K, Walmsley S, Chessman D, Rome K, Turner DE. Perspectives of patients and health professionals on the experience of living with psoriatic arthritis-related foot problems: a qualitative investigation. Clin Rheumatol. 2019;38(6):1605–1613. doi: 10.1007/s10067-018-04411-2.
    1. Leung YY, Ogdie A, Orbai A-M, Tillett W, Coates LC, Strand V, Mease P, Gladman DD. Classification and outcome measures for psoriatic arthritis. Front Med. 2018;5:246. doi: 10.3389/fmed.2018.00246.
    1. Doi T, Nakakubo S, Tsutsumimoto K, Kim M-J, Kurita S, Ishii H, Shimada H. Spatio-temporal gait variables predicted incident disability. J Neuroengineering Rehabil. 2020;17(1):11. doi: 10.1186/s12984-020-0643-4.
    1. Hyslop E, Woodburn J, McInnes IB, Semple R, Newcombe L, Hendry G, et al. A reliability study of biomechanical foot function in psoriatic arthritis based on a novel multi-segmented foot model. Gait Posture. 2010;32(4):619–626. doi: 10.1016/j.gaitpost.2010.09.004.
    1. Turner DE, Helliwell PS, Siegel KL, Woodburn J. Biomechanics of the foot in rheumatoid arthritis: identifying abnormal function and the factors associated with localised disease “impact”. Clin Biomech Bristol Avon. 2008;23(1):93–100. doi: 10.1016/j.clinbiomech.2007.08.009.
    1. Carroll M, Parmar P, Dalbeth N, Boocock M, Rome K. Gait characteristics associated with the foot and ankle in inflammatory arthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2015;16:134.
    1. Kyrdalen IL, Thingstad P, Sandvik L, Ormstad H. Associations between gait speed and well-known fall risk factors among community-dwelling older adults. Physiother Res Int. 2019;24(1):e1743. doi: 10.1002/pri.1743.
    1. Verghese J, Wang C, Holtzer R. Relationship of clinic-based gait speed measurement to limitations in community-based activities in older adults. Arch Phys Med Rehabil. 2011;92(5):844–846. doi: 10.1016/j.apmr.2010.12.030.
    1. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB, Nevitt M, Visser M, Kritchevsky S, Badinelli S, Harris T, Newman AB, Cauley J, Ferrucci L, Guralnik J. Gait speed and survival in older adults. JAMA. 2011;305(1):50–58. doi: 10.1001/jama.2010.1923.
    1. Fritz S, Lusardi M. White paper: “walking speed: the sixth vital sign”. J Geriatr Phys Ther. 2009;32(2):46–49. doi: 10.1519/00139143-200932020-00002.
    1. Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. J Aging Phys Act. 2015;23(2):314–322. doi: 10.1123/japa.2013-0236.
    1. Hausdorff JM. Gait variability: methods, modeling and meaning. J NeuroEngineering Rehabil. 2005;2(1):19. doi: 10.1186/1743-0003-2-19.
    1. Hamacher D, Singh NB, Van Dieën JH, Heller MO, Taylor WR. Kinematic measures for assessing gait stability in elderly individuals: a systematic review. J R Soc Interface. 2011;8(65):1682–1698. doi: 10.1098/rsif.2011.0416.
    1. Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. 2001;82(8):1050–1056. doi: 10.1053/apmr.2001.24893.
    1. Walha R, Lebel K, Gaudreault N, Dagenais P, Cereatti A, Della Croce U, Boissy P. The accuracy and precision of Gait Spatio-temporal parameters extracted from an instrumented sock during treadmill and Overground walking in healthy subjects and patients with a foot impairment secondary to psoriatic arthritis. Sensors. 2021;21(18):6179. doi: 10.3390/s21186179.
    1. Soulard J, Vaillant J, Balaguier R, Baillet A, Gaudin P, Vuillerme N. Foot-worn inertial sensors are reliable to assess spatiotemporal Gait parameters in axial Spondyloarthritis under single and dual task walking in axial Spondyloarthritis. Sensors. 2020;20(22):6453. doi: 10.3390/s20226453.
    1. Soulard J, Vaillant J, Agier C-T, Vuillerme N. Gait characteristics in patients with ankylosing spondylitis: a systematic review. Clin Exp Rheumatol. 2021;39(1):173–186.
    1. Soulard J, Vaillant J, Baillet A, Gaudin P, Vuillerme N. Gait and axial Spondyloarthritis: comparative Gait analysis study using foot-worn inertial sensors. JMIR MHealth UHealth. 2021;9(11):e27087. doi: 10.2196/27087.
    1. Hyslop E. Biomechanics of enthesitis of the foot in psoriatic arthritis [Internet] [Ph.D.]. Glasgow Caledonian University; 2013 [cited 2021 Oct 16]. Available from:
    1. Woodburn J, Hyslop E, Barn R, McInnes IB, Turner DE. Achilles tendon biomechanics in psoriatic arthritis patients with ultrasound proven enthesitis. Scand J Rheumatol. 2013;42(4):299–302. doi: 10.3109/03009742.2012.747626.
    1. van der Leeden M, Steultjens M, Dekker JHM, Prins APA, Dekker J. The relationship of disease duration to foot function, pain and disability in rheumatoid arthritis patients with foot complaints. Clin Exp Rheumatol. 2007;25(2):275–280.
    1. Herssens N, Verbecque E, Hallemans A, Vereeck L, Van Rompaey V, Saeys W. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture. 2018;64:181–190. doi: 10.1016/j.gaitpost.2018.06.012.
    1. Amor-Dorado JC, Barreira-Fernandez MP, Llorca J, Gonzalez-Gay MA. Oculographic, clinical test of sensory integration and balance and computerized dynamic Posturography findings in patients with psoriatic arthritis. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol. 2017;38(3):448–453. doi: 10.1097/MAO.0000000000001296.
    1. Duruoz MT, Baklacioglu HS, Sanal Toprak C, Gencer Atalay K, Atagunduz MP. The evaluation of the static and dynamic balance disorders in patients with psoriatic arthritis. Rheumatol Int. 2018;38(11):2063–2068. doi: 10.1007/s00296-018-4137-7.
    1. Carter K, Walmsley S, Oliffe M, Hassett G, Turner DE. Increased falls risk in people with psoriatic arthritis-related foot problems: a novel finding. Rheumatol Oxf Engl. 2021;60(2):976–977. doi: 10.1093/rheumatology/keaa654.
    1. Stanmore EK, Oldham J, Skelton DA, O’Neill T, Pilling M, Campbell AJ, et al. Risk factors for falls in adults with rheumatoid arthritis: a prospective study. Arthritis Care Res. 2013;65(8):1251–1258. doi: 10.1002/acr.21987.
    1. Boonstra AM, Stewart RE, Köke AJA, Oosterwijk RFA, Swaan JL, Schreurs KMG, Schiphorst Preuper HR. Cut-off points for mild, moderate, and severe pain on the numeric rating scale for pain in patients with chronic musculoskeletal pain: variability and influence of sex and catastrophizing. Front Psychol. 2016;7:1466. doi: 10.3389/fpsyg.2016.01466.
    1. Mills K, Hunt MA, Ferber R. Biomechanical deviations during level walking associated with knee osteoarthritis: a systematic review and meta-analysis. Arthritis Care Res. 2013;65(10):1643–1665. doi: 10.1002/acr.22015.
    1. Bahl JS, Nelson MJ, Taylor M, Solomon LB, Arnold JB, Thewlis D. Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: a systematic review and meta-analysis. Osteoarthr Cartil. 2018;26(7):847–863. doi: 10.1016/j.joca.2018.02.897.
    1. Eitzen I, Fernandes L, Kallerud H, Nordsletten L, Knarr B, Risberg MA. Gait characteristics, symptoms, and function in persons with hip osteoarthritis: a longitudinal study with 6 to 7 years of follow-up. J Orthop Sports Phys Ther. 2015;45(7):539–549. doi: 10.2519/jospt.2015.5441.
    1. Demirel A, Onan D, Oz M, Ozel Aslıyuce Y, Ulger O. Moderate disability has negative effect on spatiotemporal parameters in patients with chronic low back pain. Gait Posture. 2020;79:251–255. doi: 10.1016/j.gaitpost.2020.05.015.
    1. Budiman-Mak E, Conrad KJ, Roach KE. The foot function index: a measure of foot pain and disability. J Clin Epidemiol. 1991;44(6):561–570. doi: 10.1016/0895-4356(91)90220-4.
    1. Agel J, Beskin JL, Brage M, Guyton GP, Kadel NJ, Saltzman CL, Sands AK, Sangeorzan BJ, SooHoo NF, Stroud CC, Thordarson DB. Reliability of the Foot Function Index: A report of the AOFAS Outcomes Committee. Foot Ankle Int. 2005;26(11):962–967. doi: 10.1177/107110070502601112.
    1. Pourtier-Piotte C, Pereira B, Soubrier M, Thomas E, Gerbaud L, Coudeyre E. French validation of the foot function index (FFI) Ann Phys Rehabil Med. 2015;58(5):276–282. doi: 10.1016/j.rehab.2015.07.003.
    1. Comprehensive Gait and Balance Analysis - APDM Wearable Technologies [Internet]. APDM. 2020 [cited 2021 Jun 18]. Available from:
    1. Tunca C, Pehlivan N, Ak N, Arnrich B, Salur G, Ersoy C. Inertial sensor-based robust Gait analysis in non-hospital settings for neurological disorders. Sensors. 2017;17(4):825. doi: 10.3390/s17040825.
    1. Morris R, Stuart S, McBarron G, Fino PC, Mancini M, Curtze C. Validity of mobility lab (version 2) for gait assessment in young adults, older adults and Parkinson’s disease. Physiol Meas. 2019;40(9):095003. doi: 10.1088/1361-6579/ab4023.
    1. Schmitz-Hübsch T, Brandt AU, Pfueller C, Zange L, Seidel A, Kühn AA, Paul F, Minnerop M, Doss S. Accuracy and repeatability of two methods of gait analysis - GaitRite™ und mobility lab™ - in subjects with cerebellar ataxia. Gait Posture. 2016;48:194–201. doi: 10.1016/j.gaitpost.2016.05.014.
    1. Washabaugh EP, Kalyanaraman T, Adamczyk PG, Claflin ES, Krishnan C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture. 2017;55:87–93. doi: 10.1016/j.gaitpost.2017.04.013.
    1. Salarian A, Russmann H, Vingerhoets FJG, Dehollain C, Blanc Y, Burkhard PR, Aminian K. Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans Biomed Eng. 2004;51(8):1434–1443. doi: 10.1109/TBME.2004.827933.
    1. König N, Taylor WR, Baumann CR, Wenderoth N, Singh NB. Revealing the quality of movement: a meta-analysis review to quantify the thresholds to pathological variability during standing and walking. Neurosci Biobehav Rev. 2016;68:111–119. doi: 10.1016/j.neubiorev.2016.03.035.
    1. Cohen J. Statistical power analysis for the behavioral sciences. 2. New York: Routledge; 1988.
    1. Bohannon RW, Williams AA. Normal walking speed: a descriptive meta-analysis. Physiotherapy. 2011;97(3):182–189. doi: 10.1016/j.physio.2010.12.004.
    1. Kumthekar A, Ogdie A. Obesity and psoriatic arthritis: a narrative review. Rheumatol Ther. 2020;7(3):447–456. doi: 10.1007/s40744-020-00215-6.
    1. Runhaar J, Koes BW, Clockaerts S, Bierma-Zeinstra SMA. A systematic review on changed biomechanics of lower extremities in obese individuals: a possible role in development of osteoarthritis. Obes Rev Off J Int Assoc Study Obes. 2011;12(12):1071–1082. doi: 10.1111/j.1467-789X.2011.00916.x.
    1. Mickle KJ, Steele JR. Obese older adults suffer foot pain and foot-related functional limitation. Gait Posture. 2015;42(4):442–447. doi: 10.1016/j.gaitpost.2015.07.013.
    1. Baan H, Dubbeldam R, Nene AV, van de Laar MAFJ. Gait analysis of the lower limb in patients with rheumatoid arthritis: a systematic review. Semin Arthritis Rheum. 2012;41(6):768–788.e8. doi: 10.1016/j.semarthrit.2011.11.009.
    1. Mündermann A, Dyrby CO, Hurwitz DE, Sharma L, Andriacchi TP. Potential strategies to reduce medial compartment loading in patients with knee osteoarthritis of varying severity: reduced walking speed. Arthritis Rheum. 2004;50(4):1172–1178. doi: 10.1002/art.20132.
    1. Valderrabano V, Nigg BM, von Tscharner V, Stefanyshyn DJ, Goepfert B, Hintermann B. Gait analysis in ankle osteoarthritis and total ankle replacement. Clin Biomech Bristol Avon. 2007;22(8):894–904. doi: 10.1016/j.clinbiomech.2007.05.003.
    1. Lelas JL, Merriman GJ, Riley PO, Kerrigan DC. Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture. 2003;17(2):106–112. doi: 10.1016/S0966-6362(02)00060-7.
    1. Frederick EC, Hagy JL. Factors affecting peak vertical ground reaction forces in running. J Appl Biomech. 1986;2(1):41–49. doi: 10.1123/ijsb.2.1.41.
    1. Martin PE, Marsh AP. Step length and frequency effects on ground reaction forces during walking. J Biomech. 1992;25(10):1237–1239. doi: 10.1016/0021-9290(92)90081-B.
    1. Debi R, Mor A, Segal O, Segal G, Debbi E, Agar G, Halperin N, Haim A, Elbaz A. Differences in gait patterns, pain, function and quality of life between males and females with knee osteoarthritis: a clinical trial. BMC Musculoskelet Disord. 2009;10(1):127. doi: 10.1186/1471-2474-10-127.
    1. Winter DA, Patla AE, Frank JS, Walt SE. Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther. 1990;70(6):340–347. doi: 10.1093/ptj/70.6.340.
    1. Ozaras N, Havan N, Poyraz E, Rezvanı A, Aydın T. Functional limitations due to foot involvement in spondyloarthritis. J Phys Ther Sci. 2016;28(7):2005–2008. doi: 10.1589/jpts.28.2005.
    1. Ogdie A, de Wit M, Duffin KC, Campbell W, Chau J, Coates LC, et al. Defining outcome measures for psoriatic arthritis: a report from the GRAPPA-OMERACT working group. J Rheumatol. 2017;44(5):697–700. doi: 10.3899/jrheum.170150.
    1. Brognara L, Palumbo P, Grimm B, Palmerini L. Assessing Gait in Parkinson’s disease using wearable motion sensors: a systematic review. Dis Basel Switz. 2019;7(1):E18. doi: 10.3390/diseases7010018.
    1. Pollet J, Buraschi R, Villafañe JH, Piovanelli B, Negrini S. Gait parameters assessed with inertial measurement unit during 6-minute walk test in people after stroke. Int J Rehabil Res Int Z Rehabil Rev Int Rech Readaptation. 2021;44(4):358–363. doi: 10.1097/MRR.0000000000000498.
    1. Vienne-Jumeau A, Quijoux F, Vidal P-P, Ricard D. Wearable inertial sensors provide reliable biomarkers of disease severity in multiple sclerosis: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2020;63(2):138–147. doi: 10.1016/j.rehab.2019.07.004.
    1. Keenan A-M, Redmond AC, Horton M, Conaghan PG, Tennant A. The foot posture index: Rasch analysis of a novel, foot-specific outcome measure. Arch Phys Med Rehabil. 2007;88(1):88–93. doi: 10.1016/j.apmr.2006.10.005.

Source: PubMed

3
Subskrybuj