Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study

Anahita Rouzé, Ignacio Martin-Loeches, Pedro Povoa, Demosthenes Makris, Antonio Artigas, Mathilde Bouchereau, Fabien Lambiotte, Matthieu Metzelard, Pierre Cuchet, Claire Boulle Geronimi, Marie Labruyere, Fabienne Tamion, Martine Nyunga, Charles-Edouard Luyt, Julien Labreuche, Olivier Pouly, Justine Bardin, Anastasia Saade, Pierre Asfar, Jean-Luc Baudel, Alexandra Beurton, Denis Garot, Iliana Ioannidou, Louis Kreitmann, Jean-François Llitjos, Eleni Magira, Bruno Mégarbane, David Meguerditchian, Edgar Moglia, Armand Mekontso-Dessap, Jean Reignier, Matthieu Turpin, Alexandre Pierre, Gaetan Plantefeve, Christophe Vinsonneau, Pierre-Edouard Floch, Nicolas Weiss, Adrian Ceccato, Antoni Torres, Alain Duhamel, Saad Nseir, coVAPid study Group, Raphaël Favory, Sébastien Preau, Mercé Jourdain, Julien Poissy, Chaouki Bouras, Piehr Saint Leger, Hanane Fodil, François Aptel, Thierry Van Der Linden, Arnaud W Thille, Elie Azoulay, Frédéric Pène, Keyvan Razazi, François Bagate, Damien Contou, Guillaume Voiriot, Didier Thevenin, Bertrand Guidet, Loïc Le Guennec, Achille Kouatchet, Stephan Ehrmann, Guillaume Brunin, Elise Morawiec, Alexandre Boyer, Laurent Argaud, Sebastian Voicu, Ania Nieszkowska, Benjamin Kowalski, Gemma Goma, Emilio Diaz, Luis Morales, Vassiliki Tsolaki, George Gtavriilidis, Spyros D Mentzelopoulos, David Nora, Sean Boyd, Luis Coelho, Julien Maizel, Damien Du Cheyron, Mehdi Imouloudene, Jean-Pierre Quenot, Arnaud Guilbert, Catia Cilloniz, Anahita Rouzé, Ignacio Martin-Loeches, Pedro Povoa, Demosthenes Makris, Antonio Artigas, Mathilde Bouchereau, Fabien Lambiotte, Matthieu Metzelard, Pierre Cuchet, Claire Boulle Geronimi, Marie Labruyere, Fabienne Tamion, Martine Nyunga, Charles-Edouard Luyt, Julien Labreuche, Olivier Pouly, Justine Bardin, Anastasia Saade, Pierre Asfar, Jean-Luc Baudel, Alexandra Beurton, Denis Garot, Iliana Ioannidou, Louis Kreitmann, Jean-François Llitjos, Eleni Magira, Bruno Mégarbane, David Meguerditchian, Edgar Moglia, Armand Mekontso-Dessap, Jean Reignier, Matthieu Turpin, Alexandre Pierre, Gaetan Plantefeve, Christophe Vinsonneau, Pierre-Edouard Floch, Nicolas Weiss, Adrian Ceccato, Antoni Torres, Alain Duhamel, Saad Nseir, coVAPid study Group, Raphaël Favory, Sébastien Preau, Mercé Jourdain, Julien Poissy, Chaouki Bouras, Piehr Saint Leger, Hanane Fodil, François Aptel, Thierry Van Der Linden, Arnaud W Thille, Elie Azoulay, Frédéric Pène, Keyvan Razazi, François Bagate, Damien Contou, Guillaume Voiriot, Didier Thevenin, Bertrand Guidet, Loïc Le Guennec, Achille Kouatchet, Stephan Ehrmann, Guillaume Brunin, Elise Morawiec, Alexandre Boyer, Laurent Argaud, Sebastian Voicu, Ania Nieszkowska, Benjamin Kowalski, Gemma Goma, Emilio Diaz, Luis Morales, Vassiliki Tsolaki, George Gtavriilidis, Spyros D Mentzelopoulos, David Nora, Sean Boyd, Luis Coelho, Julien Maizel, Damien Du Cheyron, Mehdi Imouloudene, Jean-Pierre Quenot, Arnaud Guilbert, Catia Cilloniz

Abstract

Purpose: Although patients with SARS-CoV-2 infection have several risk factors for ventilator-associated lower respiratory tract infections (VA-LRTI), the reported incidence of hospital-acquired infections is low. We aimed to determine the relationship between SARS-CoV-2 pneumonia, as compared to influenza pneumonia or no viral infection, and the incidence of VA-LRTI.

Methods: Multicenter retrospective European cohort performed in 36 ICUs. All adult patients receiving invasive mechanical ventilation > 48 h were eligible if they had: SARS-CoV-2 pneumonia, influenza pneumonia, or no viral infection at ICU admission. VA-LRTI, including ventilator-associated tracheobronchitis (VAT) and ventilator-associated pneumonia (VAP), were diagnosed using clinical, radiological and quantitative microbiological criteria. All VA-LRTI were prospectively identified, and chest-X rays were analyzed by at least two physicians. Cumulative incidence of first episodes of VA-LRTI was estimated using the Kalbfleisch and Prentice method, and compared using Fine-and Gray models.

Results: 1576 patients were included (568 in SARS-CoV-2, 482 in influenza, and 526 in no viral infection groups). VA-LRTI incidence was significantly higher in SARS-CoV-2 patients (287, 50.5%), as compared to influenza patients (146, 30.3%, adjusted sub hazard ratio (sHR) 1.60 (95% confidence interval (CI) 1.26 to 2.04)) or patients with no viral infection (133, 25.3%, adjusted sHR 1.7 (95% CI 1.2 to 2.39)). Gram-negative bacilli were responsible for a large proportion (82% to 89.7%) of VA-LRTI, mainly Pseudomonas aeruginosa, Enterobacter spp., and Klebsiella spp.

Conclusions: The incidence of VA-LRTI is significantly higher in patients with SARS-CoV-2 infection, as compared to patients with influenza pneumonia, or no viral infection after statistical adjustment, but residual confounding may still play a role in the effect estimates.

Keywords: COVID-19; Critical illness; SARS-CoV-2; Ventilator-associated pneumonia; Ventilator-associated tracheobronchitis.

Conflict of interest statement

AR received personal fees from MaatPharma, IML received personal fees from MSD, and Gilead. AA received personal fees from Lilly Foundation, and grants from Grifols and Fischer & Paykel. CEL received personal fees from Bayer, Merck, Aerogen, Biomérieux, ThermoFischer Brahms, and Carmat. NW received personal fees from MedDay pharmaceuticals. SN received personal fees from MSD, Bio Rad, BioMérieux, Gilead, and Pfizer. All other authors declare no competing interests.

Figures

Fig. 1
Fig. 1
The 28-day cumulative incidence of ventilator-associated lower respiratory tract infections. Cumulative incidence estimated using Kalbfleish and Prentice method, considering extubation (dead or alive) within 28 days as competing event. VA-LRTI ventilator-associated respiratory tract infection, MV mechanical ventilation

References

    1. Argenziano MG, Bruce SL, Slater CL, et al. Characterization and clinical course of 1000 patients with COVID-19 in New York: retrospective case series. medRxiv Prepr Serv Heal Sci. 2020 doi: 10.1101/2020.04.20.20072116.
    1. Lewnard JA, Liu VX, Jackson ML, et al. Incidence, clinical outcomes, and transmission dynamics of severe coronavirus disease 2019 in California and Washington: prospective cohort study. BMJ. 2020 doi: 10.1136/BMJ.M1923.
    1. Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020 doi: 10.1136/BMJ.M1985.
    1. Martin-Loeches I, Povoa P, Rodríguez A, et al. Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): a multicentre, prospective, observational study. Lancet Respir Med. 2015;3:859–868. doi: 10.1016/S2213-2600(15)00326-4.
    1. Papazian L, Klompas M, Luyt C-E. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med. 2020;46:888–906. doi: 10.1007/s00134-020-05980-0.
    1. Nair GB, Niederman MS. Ventilator-associated pneumonia: present understanding and ongoing debates. Intensive Care Med. 2014;41:34–48. doi: 10.1007/s00134-014-3564-5.
    1. Forel J-M, Voillet F, Pulina D, et al. Ventilator-associated pneumonia and ICU mortality in severe ARDS patients ventilated according to a lung-protective strategy. Crit Care. 2012;16:R65. doi: 10.1186/cc11312.
    1. Chastre J, Fagon J-Y. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002;165:867–903. doi: 10.1164/ajrccm.165.7.2105078.
    1. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020 doi: 10.1001/jamainternmed.2020.0994.
    1. Mahmudpour M, Roozbeh J, Keshavarz M, et al. COVID-19 cytokine storm: the anger of inflammation. Cytokine. 2020 doi: 10.1016/J.CYTO.2020.155151.
    1. Jeannet R, Daix T, Formento R, et al. Severe COVID-19 is associated with deep and sustained multifaceted cellular immunosuppression. Intensive Care Med. 2020 doi: 10.1007/s00134-020-06127-x.
    1. Sinha P, Matthay MA, Calfee CS. Is a cytokine storm; relevant to COVID-19? JAMA Intern Med. 2020 doi: 10.1001/jamainternmed.2020.3313.
    1. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30079-5.
    1. Ye L, Yang S, Liu C. Infection prevention and control in nursing severe coronavirus disease (COVID-19) patients during the pandemic. Crit Care. 2020 doi: 10.1186/S13054-020-03076-1.
    1. Gu S, Chen Y, Wu Z, et al. Alterations of the gut microbiota in patients with COVID-19 or H1N1 influenza. Clin Infect Dis. 2020 doi: 10.1093/CID/CIAA709.
    1. Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020 doi: 10.1053/j.gastro.2020.05.048.
    1. Paul M, Shani V, Muchtar E, et al. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother. 2010;54:4851–4863. doi: 10.1128/AAC.00627-10.
    1. Magiorakos A-P, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–281. doi: 10.1111/j.1469-0691.2011.03570.x.
    1. Pintilie M. Dealing with competing risks: testing covariates and calculating sample size. Stat Med. 2002;21:3317–3324. doi: 10.1002/sim.1271.
    1. Prentice RL, Kalbfleisch JD, Peterson AV, et al. The analysis of failure times in the presence of competing risks. Biometrics. 1978;34:541–554. doi: 10.2307/2530374.
    1. van Buuren S, Groothuis-Oudshoorn K. mice: multivariate Imputation by Chained Equations in R. J Stat Softw. 2011;45:1–67. doi: 10.18637/jss.v045.i03.
    1. Gladitz J (1989) Rubin, Donald B.: Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, Chichester – New York – Brisbane – Toronto – Singapore 1987, xxx, 258 S., 6 Abb., £ 30.25, ISSN 0271-6232. Biometrical J 31:131–132. doi: 10.1002/bimj.4710310118
    1. Yap FHY, Gomersall CD, Fung KSC, et al. Increase in methicillin-resistant Staphylococcus aureus acquisition rate and change in pathogen pattern associated with an outbreak of severe acute respiratory syndrome. Clin Infect Dis. 2004;39:511–516. doi: 10.1086/422641.
    1. Harris AD, Pineles L, Belton B, et al. Universal glove and gown use and acquisition of antibiotic-resistant bacteria in the ICU: a randomized trial. JAMA. 2013;310:1571–1580. doi: 10.1001/jama.2013.277815.
    1. Poulakou G, Nseir S, Daikos GL. Less contact isolation is more in the ICU: pro. Intensive Care Med. 2020 doi: 10.1007/s00134-020-06173-5.
    1. Grasselli G, Tonetti T, Protti A, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30370-2.
    1. Copin M-C, Parmentier E, Duburcq T, et al. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med. 2020;46:1124–1126. doi: 10.1007/s00134-020-06057-8.
    1. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383:120–128. doi: 10.1056/NEJMoa2015432.
    1. Crane MJ, Lee KM, FitzGerald ES, Jamieson AM. Surviving deadly lung infections: innate host tolerance mechanisms in the pulmonary system. Front Immunol. 2018;9:1421. doi: 10.3389/fimmu.2018.01421.

Source: PubMed

3
Subskrybuj