The Acquisition of Multidrug-Resistant Bacteria in Patients Admitted to COVID-19 Intensive Care Units: A Monocentric Retrospective Case Control Study

Elisa G Bogossian, Fabio S Taccone, Antonio Izzi, Nicolas Yin, Alessandra Garufi, Stephane Hublet, Hassane Njimi, Amedee Ego, Julie Gorham, Baudouin Byl, Alexandre Brasseur, Maya Hites, Jean-Louis Vincent, Jacques Creteur, David Grimaldi, Elisa G Bogossian, Fabio S Taccone, Antonio Izzi, Nicolas Yin, Alessandra Garufi, Stephane Hublet, Hassane Njimi, Amedee Ego, Julie Gorham, Baudouin Byl, Alexandre Brasseur, Maya Hites, Jean-Louis Vincent, Jacques Creteur, David Grimaldi

Abstract

Whether the risk of multidrug-resistant bacteria (MDRB) acquisition in the intensive care unit (ICU) is modified by the COVID-19 crisis is unknown. In this single center case control study, we measured the rate of MDRB acquisition in patients admitted in COVID-19 ICU and compared it with patients admitted in the same ICU for subarachnoid hemorrhage (controls) matched 1:1 on length of ICU stay and mechanical ventilation. All patients were systematically and repeatedly screened for MDRB carriage. We compared the rate of MDRB acquisition in COVID-19 patients and in control using a competing risk analysis. Of note, although we tried to match COVID-19 patients with septic shock patients, we were unable due to the longer stay of COVID-19 patients. Among 72 patients admitted to the COVID-19 ICUs, 33% acquired 31 MDRB during ICU stay. The incidence density of MDRB acquisition was 30/1000 patient days. Antimicrobial therapy and exposure time were associated with higher rate of MDRB acquisition. Among the 72 SAH patients, 21% acquired MDRB, with an incidence density was 18/1000 patient days. The septic patients had more comorbidities and a greater number of previous hospitalizations than the COVID-19 patients. The incidence density of MDRB acquisition was 30/1000 patient days. The association between COVID-19 and MDRB acquisition (compared to control) risk did not reach statistical significance in the multivariable competing risk analysis (sHR 1.71 (CI 95% 0.93-3.21)). Thus, we conclude that, despite strong physical isolation, acquisition rate of MDRB in ICU patients was at least similar during the COVID-19 first wave compared to previous period.

Keywords: Enterobacteriaceae; SARS-CoV-2; antimicrobial resistance; critically illness; infection control; subarachnoid hemorrhage; viral pandemic.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Distribution of MDRB bacteria acquired during COVID-19 ICU stay according to mechanism of resistance. AmpC β lactamase (AmpC) Enterobacteriaceae (N = 12): Enterobacter aerogenes (N = 6); E. cloacae (N = 5); Escherichia coli (N = 1). Extended spectrum β-lactamase (ESBL) Enterobacteriaceae (N = 9): Klebsiella pneumoniae (N = 6); E. coli (N = 2); E. aerogenes (N = 1). Carbapenem-resistant Enterobacteriaceae (CRE) (N = 3): K. pneumoniae (N = 2); E. aerogenes (N = 1). Vancomycin-resistant enterococci (VRE) (N = 3): Enterococcus faecium (N = 3); Multidrug-resistant Pseudomonas aeruginosa (N = 4).
Figure 2
Figure 2
Cumulative incidence of MDRB over time during ICU admission into two types of units (Medical–surgical and COVID-19 units). Comparison of Hazard ratios was calculated using the Fine and Gray method. p = 0.14 between groups.

References

    1. World Health Organization . Coronavirus Disease (COVID-2019) Situation Reports. World Health Organization; Geneva, Switzerland: 2020.
    1. Li R., Rivers C., Tan Q., Murray M.B., Toner E., Lipsitch M. Estimated Demand for US Hospital Inpatient and Intensive Care Unit Beds for Patients With COVID-19 Based on Comparisons With Wuhan and Guangzhou, China. JAMA Netw. Open. 2020;3:e208297. doi: 10.1001/jamanetworkopen.2020.8297.
    1. Garcia Godoy L.R., Jones A.E., Anderson T.N., Fisher C.L., Seeley K.M.L., Beeson E.A., Zane H.K., Peterson J.W., Sullivan P.D. Facial protection for healthcare workers during pandemics: A scoping review. BMJ Glob. Health. 2020;5:e002553. doi: 10.1136/bmjgh-2020-002553.
    1. The COVID19-APHP Group Assistance Publique-Hopitaux de Paris’ response to the COVID-19 pandemic. Lancet. 2020;395:1760–1761. doi: 10.1016/S0140-6736(20)31210-1.
    1. Rawson T.M., Moore L.S.P., Zhu N., Ranganathan N., Skolimowska K., Gilchrist M., Satta G., Cooke G., Holmes A. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa530.
    1. Rawson T.M., Moore L.S.P., Castro-Sanchez E., Charani E., Davies F., Satta G., Ellington M.J., Holmes A.H. COVID-19 and the potential long-term impact on antimicrobial resistance. J. Antimicrob. Chemother. 2020;75:1681–1684. doi: 10.1093/jac/dkaa194.
    1. Huttner A., Harbarth S., Carlet J., Cosgrove S., Goossens H., Holmes A., Jarlier V., Voss A., Pittet D. Antimicrobial resistance: A global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrob. Resist. Infect. Control. 2013;2:31. doi: 10.1186/2047-2994-2-31.
    1. Gutierrez-Gutierrez B., Rodriguez-Bano J. Current options for the treatment of infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae in different groups of patients. Clin. Microbiol. Infect. 2019;25:932–942. doi: 10.1016/j.cmi.2019.03.030.
    1. Falagas M.E., Tansarli G.S., Karageorgopoulos D.E., Vardakas K.Z. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg. Infect. Dis. 2014;20:1170–1175. doi: 10.3201/eid2007.121004.
    1. Antibiotic Resistance Threats in the United States, CDC. [(accessed on 27 October 2020)];2013 Available online: .
    1. Brusselaers N., Vogelaers D., Blot S. The rising problem of antimicrobial resistance in the intensive care unit. Ann. Intensive Care. 2011;1:47. doi: 10.1186/2110-5820-1-47.
    1. Grimaldi D., Aissaoui N., Blonz G., Carbutti G., Courcelle R., Gaudry S., Gaultier A., D’Hondt A., Higny J., Horlait G., et al. Characteristics and outcomes of acute respiratory distress syndrome related to COVID-19 in Belgian and French intensive care units according to antiviral strategies: The COVADIS multicentre observational study. Ann. Intensive Care. 2020;10:131. doi: 10.1186/s13613-020-00751-y.
    1. Bogossian E.G., Attanasio L., Creteur J., Grimaldi D., Schuind S., Taccone F.S. The impact of extra-cerebral infection after subarachnoid hemorrhage: A single center cohort study. World Neurosurg. 2020 doi: 10.1016/j.wneu.2020.09.102.
    1. Witiw C.D., Ibrahim G.M., Fallah A., Macdonald R.L. Early predictors of prolonged stay in a critical care unit following aneurysmal subarachnoid hemorrhage. Neurocritical Care. 2013;18:291–297. doi: 10.1007/s12028-013-9815-4.
    1. Alaraj A., Hussein A.E., Esfahani D.R., Amin-Hanjani S., Aletich V.A., Charbel F.T. Reducing length of stay in aneurysmal subarachnoid hemorrhage: A three year institutional experience. J. Clin. Neurosci. 2017;42:66–70. doi: 10.1016/j.jocn.2017.03.049.
    1. The European Committee on Antimicrobial Susceptibility Testing [(accessed on 1 September 2019)];Breakpoint Tables for Interpretation of MICs and Zone Diameters. 2019 Version 90. Available online:
    1. Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012;18:268–281. doi: 10.1111/j.1469-0691.2011.03570.x.
    1. De Waele J.J., Boelens J., Leroux-Roels I. Multidrug-resistant bacteria in ICU: Fact or myth. Curr. Opin. Anaesthesiol. 2020;33:156–161. doi: 10.1097/ACO.0000000000000830.
    1. De Bus L., Denys W., Catteeuw J., Gadeyne B., Vermeulen K., Boelens J., Claeys G., De Waele J.J., Decruyenaere J., Depuydt P.O. Impact of de-escalation of beta-lactam antibiotics on the emergence of antibiotic resistance in ICU patients: A retrospective observational study. Intensive Care Med. 2016;42:1029–1039. doi: 10.1007/s00134-016-4301-z.
    1. Kerneis S., Lucet J.C. Controlling the Diffusion of Multidrug-Resistant Organisms in Intensive Care Units. Semin. Respir. Crit. Care Med. 2019;40:558–568. doi: 10.1055/s-0039-1696980.
    1. Grundmann H., Hahn A., Ehrenstein B., Geiger K., Just H., Daschner F.D. Detection of cross-transmission of multiresistant Gram-negative bacilli and Staphylococcus aureus in adult intensive care units by routine typing of clinical isolates. Clin. Microbiol. Infect. 1999;5:355–363. doi: 10.1111/j.1469-0691.1999.tb00154.x.
    1. Chetchotisakd P., Phelps C.L., Hartstein A.I. Assessment of bacterial cross-transmission as a cause of infections in patients in intensive care units. Clin. Infect. Dis. 1994;18:929–937. doi: 10.1093/clinids/18.6.929.
    1. Boyce J.M., Pittet D., Healthcare Infection Control Practices Advisory Committee. HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force Guideline for Hand Hygiene in Health-Care Settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HIPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Am. J. Infect. Control. 2002;30:S1–S46. doi: 10.1067/mic.2002.130391.
    1. Osterholm M.T. Preparing for the next pandemic. N. Engl. J. Med. 2005;352:1839–1842. doi: 10.1056/NEJMp058068.
    1. Nieuwlaat R., Mbuagbaw L., Mertz D., Burrows L., Bowdish D.M.E., Moja L., Wright G.D., Schunemann H.J. COVID-19 and Antimicrobial Resistance: Parallel and Interacting Health Emergencies. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa773.
    1. Clancy C.J., Nguyen M.H. COVID-19, superinfections and antimicrobial development: What can we expect? Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa524.
    1. Sturdy A., Basarab M., Cotter M., Hager K., Shakespeare D., Shah N., Randall P., Spray D., Arnold A. Severe COVID-19 and Healthcare Associated Infections on the ICU: Time to Remember the Basics? J. Hosp. Infect. 2020 doi: 10.1016/j.jhin.2020.06.027.
    1. Ranney M.L., Griffeth V., Jha A.K. Critical Supply Shortages—The Need for Ventilators and Personal Protective Equipment during the Covid-19 Pandemic. N. Engl. J. Med. 2020;382:e41. doi: 10.1056/NEJMp2006141.
    1. Murray A.K. The Novel Coronavirus COVID-19 Outbreak: Global Implications for Antimicrobial Resistance. Front. Microbiol. 2020;11:1020. doi: 10.3389/fmicb.2020.01020.
    1. Chatzopoulou M., Reynolds L. Role of antimicrobial restrictions in bacterial resistance control: A systematic literature review. J. Hosp. Infect. 2020;104:125–136. doi: 10.1016/j.jhin.2019.09.011.
    1. Morens D.M., Taubenberger J.K., Fauci A.S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness. J. Infect. Dis. 2008;198:962–970. doi: 10.1086/591708.
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Burn E., You S.C., Sena A.G., Kostka K., Abedtash H., Abrahao M.T.F., Alberga A., Alghoul H., Alser O., Alshammari T.M., et al. An international characterisation of patients hospitalised with COVID-19 and a comparison with those previously hospitalised with influenza. medRxiv. 2020 doi: 10.1101/2020.04.22.20074336.

Source: PubMed

3
Subskrybuj