Dietary fructose reduction improves markers of cardiovascular disease risk in Hispanic-American adolescents with NAFLD

Ran Jin, Jean A Welsh, Ngoc-Anh Le, Jeffrey Holzberg, Puneet Sharma, Diego R Martin, Miriam B Vos, Ran Jin, Jean A Welsh, Ngoc-Anh Le, Jeffrey Holzberg, Puneet Sharma, Diego R Martin, Miriam B Vos

Abstract

Nonalcoholic fatty liver disease (NAFLD) is now thought to be the most common liver disease worldwide. Cardiovascular complications are a leading cause of mortality in NAFLD. Fructose, a common nutrient in the westernized diet, has been reported to be associated with increased cardiovascular risk, but its impact on adolescents with NAFLD is not well understood. We designed a 4-week randomized, controlled, double-blinded beverage intervention study. Twenty-four overweight Hispanic-American adolescents who had hepatic fat >8% on imaging and who were regular consumers of sweet beverages were enrolled and randomized to calorie-matched study-provided fructose only or glucose only beverages. After 4 weeks, there was no significant change in hepatic fat or body weight in either group. In the glucose beverage group there was significantly improved adipose insulin sensitivity, high sensitivity C-reactive protein (hs-CRP), and low-density lipoprotein (LDL) oxidation. These findings demonstrate that reduction of fructose improves several important factors related to cardiovascular disease despite a lack of measurable improvement in hepatic steatosis. Reducing dietary fructose may be an effective intervention to blunt atherosclerosis progression among NAFLD patients and should be evaluated in longer term clinical trials.

Figures

Figure 1
Figure 1
Study design for the randomized controlled beverage trial.
Figure 2
Figure 2
4-week percent changes of plasma hs-CRP (A); adipose IR index (B); and large VLDL particle numbers (C) in both fructose and glucose beverage groups among adolescents with hepatic steatosis. Error bars stand for SE.

References

    1. Lazo M., Clark J.M. The epidemiology of nonalcoholic fatty liver disease: A global perspective. Semin. Liver Dis. 2008;28:339–350. doi: 10.1055/s-0028-1091978.
    1. Argo C.K., Caldwell S.H. Epidemiology and natural history of non-alcoholic steatohepatitis. Clin. Liver Dis. 2009;13:511–531. doi: 10.1016/j.cld.2009.07.005.
    1. Tiniakos D.G., Vos M.B., Brunt E.M. Nonalcoholic fatty liver disease: Pathology and pathogenesis. Annu. Rev. Pathol. 2010;5:145–171. doi: 10.1146/annurev-pathol-121808-102132.
    1. Berardis S., Sokal E. Pediatric non-alcoholic fatty liver disease: An increasing public health issue. Eur. J. Pediatr. 2014;173:131–139. doi: 10.1007/s00431-013-2157-6.
    1. Alisi A., Manco M., Vania A., Nobili V. Pediatric nonalcoholic fatty liver disease in 2009. J. Pediatr. 2009;155:469–474. doi: 10.1016/j.jpeds.2009.06.014.
    1. Welsh J.A., Karpen S., Vos M.B. Increasing prevalence of nonalcoholic fatty liver disease among United States adolescents, 1988–1994 to 2007–2010. J. Pediatr. 2013;162:496–500. doi: 10.1016/j.jpeds.2012.08.043.
    1. Barshop N.J., Sirlin C.B., Schwimmer J.B., Lavine J.E. Review article: Epidemiology, pathogenesis and potential treatments of paediatric non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2008;28:13–24. doi: 10.1111/j.1365-2036.2008.03703.x.
    1. Adams L.A., Lymp J.F., St. Sauver J., Sanderson S.O., Lindor K.D., Feldstein A., Angulo P. The natural history of nonalcoholic fatty liver disease: A population-based cohort study. Gastroenterology. 2005;129:113–121. doi: 10.1053/j.gastro.2005.04.014.
    1. Soderberg C., Stal P., Askling J., Glaumann H., Lindberg G., Marmur J., Hultcrantz R. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology. 2010;51:595–602. doi: 10.1002/hep.23314.
    1. Rafiq N., Bai C., Fang Y., Srishord M., McCullough A., Gramlich T., Younossi Z.M. Long-term follow-up of patients with nonalcoholic fatty liver. Clin. Gastroenterol. Hepatol. 2009;7:234–238. doi: 10.1016/j.cgh.2008.11.005.
    1. Targher G., Day C.P., Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 2010;363:1341–1350. doi: 10.1056/NEJMra0912063.
    1. Pacifico L., Anania C., Martino F., Cantisani V., Pascone R., Marcantonio A., Chiesa C. Functional and morphological vascular changes in pediatric nonalcoholic fatty liver disease. Hepatology. 2010;52:1643–1651. doi: 10.1002/hep.23890.
    1. Manco M., Bedogni G., Monti L., Morino G., Natali G., Nobili V. Intima-media thickness and liver histology in obese children and adolescents with non-alcoholic fatty liver disease. Atherosclerosis. 2010;209:463–468. doi: 10.1016/j.atherosclerosis.2009.10.014.
    1. Pacifico L., Nobili V., Anania C., Verdecchia P., Chiesa C. Pediatric nonalcoholic fatty liver disease, metabolic syndrome and cardiovascular risk. World J. Gastroenterol. 2011;17:3082–3091.
    1. Duffey K.J., Popkin B.M. Shifts in patterns and consumption of beverages between 1965 and 2002. Obesity. 2007;15:2739–2747. doi: 10.1038/oby.2007.326.
    1. Kit B.K., Fakhouri T.H., Park S., Nielsen S.J., Ogden C.L. Trends in sugar-sweetened beverage consumption among youth and adults in the United States: 1999–2010. Am. J. Clin. Nutr. 2013;98:180–188. doi: 10.3945/ajcn.112.057943.
    1. Bremer A.A., Auinger P., Byrd R.S. Sugar-Sweetened Beverage Intake Trends in US Adolescents and Their Association with Insulin Resistance-Related Parameters. J. Nutr. Metab. 2010;2010:196476.
    1. Wang Y.C., Bleich S.N., Gortmaker S.L. Increasing caloric contribution from sugar-sweetened beverages and 100% fruit juices among US children and adolescents, 1988–2004. Pediatrics. 2008;121:e1604–e1614. doi: 10.1542/peds.2007-2834.
    1. Vos M.B., Kimmons J.E., Gillespie C., Welsh J., Blanck H.M. Dietary fructose consumption among US children and adults: The Third National Health and Nutrition Examination Survey. Medscape. J. Med. 2008;10:160.
    1. Diet, nutrition and the prevention of chronic diseases. [(accessed on 28 January 2002)]. Available online: .
    1. Johnson R.K., Appel L.J., Brands M., Howard B.V., Lefevre M., Lustig R.H., Sacks F., Steffen L.M., Wylie-Rosett J., American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism and the Council on Epidemiology and Prevention Dietary Sugars Intake and Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation. 2009;120:1011–1020. doi: 10.1161/CIRCULATIONAHA.109.192627.
    1. Bergheim I., Weber S., Vos M., Kramer S., Volynets V., Kaserouni S., McClain C.J., Bischoff S.C. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: Role of endotoxin. J. Hepatol. 2008;48:983–992. doi: 10.1016/j.jhep.2008.01.035.
    1. Stanhope K.L., Schwarz J.M., Keim N.L., Griffen S.C., Bremer A.A., Graham J.L., Hatcher B., Cox C.L., Dyachenko A., Zhang W., et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 2009;119:1322–1334. doi: 10.1172/JCI37385.
    1. Jin R., Le N.A., Liu S., Farkas Epperson M., Ziegler T.R., Welsh J.A., Jones D.P., McClain C.J., Vos M.B. Children with NAFLD are more sensitive to the adverse metabolic effects of fructose beverages than children without NAFLD. J. Clin. Endocrinol. Metab. 2012;97:E1088–E1098. doi: 10.1210/jc.2012-1370.
    1. Girard A., Madani S., Boukortt F., Cherkaoui-Malki M., Belleville J., Prost J. Fructose-enriched diet modifies antioxidant status and lipid metabolism in spontaneously hypertensive rats. Nutrition. 2006;22:758–766. doi: 10.1016/j.nut.2006.05.006.
    1. Rebolledo O.R., Marra C.A., Raschia A., Rodriguez S., Gagliardino J.J. Abdominal adipose tissue: Early metabolic dysfunction associated to insulin resistance and oxidative stress induced by an unbalanced diet. Horm. Metab. Res. 2008;40:794–800. doi: 10.1055/s-2008-1081502.
    1. Thirunavukkarasu V., Anuradha C.V. Influence of alpha-lipoic acid on lipid peroxidation and antioxidant defence system in blood of insulin-resistant rats. Diabetes Obes. Metab. 2004;6:200–207. doi: 10.1111/j.1462-8902.2004.00332.x.
    1. Vos M.B., Lavine J.E. Dietary fructose in nonalcoholic fatty liver disease. Hepatology. 2013;57:2525–2531. doi: 10.1002/hep.26299.
    1. Basaranoglu M., Basaranoglu G., Sabuncu T., Senturk H. Fructose as a key player in the development of fatty liver disease. World J. Gastroenterol. 2013;19:1166–1172. doi: 10.3748/wjg.v19.i8.1166.
    1. Targher G. Non-alcoholic fatty liver disease, the metabolic syndrome and the risk of cardiovascular disease: The plot thickens. Diabet. Med. 2007;24:1–6. doi: 10.1111/j.1464-5491.2007.02025.x.
    1. Pineda N., Sharma P., Xu Q., Hu X., Vos M., Martin D.R. Measurement of hepatic lipid: High-speed T2-corrected multiecho acquisition at 1H MR spectroscopy—A rapid and accurate technique. Radiology. 2009;252:568–576. doi: 10.1148/radiol.2523082084.
    1. Walker R.W., Dumke K.A., Goran M.I. Fructose content in popular beverages made with and without high-fructose corn syrup. Nutrition. 2014;30:928–935. doi: 10.1016/j.nut.2014.04.003.
    1. Jeyarajah E.J., Cromwell W.C., Otvos J.D. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin. Lab. Med. 2006;26:847–870. doi: 10.1016/j.cll.2006.07.006.
    1. Gastaldelli A., Cusi K., Pettiti M., Hardies J., Miyazaki Y., Berria R., Buzzigoli E., Sironi A.M., Cersosimo E., Ferrannini E., et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133:496–506. doi: 10.1053/j.gastro.2007.04.068.
    1. Esterbauer H., Striegl G., Puhl H., Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic. Res. Commun. 1989;6:67–75. doi: 10.3109/10715768909073429.
    1. Innis-Whitehouse W., Li X., Brown W.V., Le N.A. An efficient chromatographic system for lipoprotein fractionation using whole plasma. J. Lipid Res. 1998;39:679–690.
    1. Schwimmer J.B., Pardee P.E., Lavine J.E., Blumkin A.K., Cook S. Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease. Circulation. 2008;118:277–283. doi: 10.1161/CIRCULATIONAHA.107.739920.
    1. Williams C.D., Stengel J., Asike M.I., Torres D.M., Shaw J., Contreras M., Landt C.L., Harrison S.A. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: A prospective study. Gastroenterology. 2011;140:124–131. doi: 10.1053/j.gastro.2010.09.038.
    1. Browning J.D., Szczepaniak L.S., Dobbins R., Nuremberg P., Horton J.D., Cohen J.C., Grundy S.M., Hobbs H.H. Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology. 2004;40:1387–1395. doi: 10.1002/hep.20466.
    1. Vos M.B., McClain C.J. Fructose takes a toll. Hepatology. 2009;50:1004–1006. doi: 10.1002/hep.23212.
    1. Mehta N.N., McGillicuddy F.C., Anderson P.D., Hinkle C.C., Shah R., Pruscino L., Tabita-Martinez J., Sellers K.F., Rickels M.R., Reilly M.P. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes. 2010;59:172–181. doi: 10.2337/db09-0367.
    1. Lewis G.F., Uffelman K.D., Szeto L.W., Weller B., Steiner G. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J. Clin. Investig. 1995;95:158–166. doi: 10.1172/JCI117633.
    1. Adiels M., Taskinen M.R., Boren J. Fatty liver, insulin resistance, and dyslipidemia. Curr. Diabetes Rep. 2008;8:60–64. doi: 10.1007/s11892-008-0011-4.
    1. Vos M.B., Weber M.B., Welsh J., Khatoon F., Jones D.P., Whitington P.F., McClain C.J. Fructose and oxidized low-density lipoprotein in pediatric nonalcoholic fatty liver disease: A pilot study. Arch. Pediatr. Adolesc. Med. 2009;163:674–675. doi: 10.1001/archpediatrics.2009.93.
    1. Garcia M.E., Marra C.A., Rebolledo O.R. Glycoxidative stress-induced damage on lipid profile in a fructose-enriched diet model of insulin resistance in rats. Arch. Physiol. Biochem. 2010;116:42–49. doi: 10.3109/13813450903527713.
    1. Farina J.P., Garcia M.E., Alzamendi A., Giovambattista A., Marra C.A., Spinedi E., Gagliardino J.J. Antioxidant treatment prevents the development of fructose-induced abdominal adipose tissue dysfunction. Clin. Sci. 2013;125:87–97. doi: 10.1042/CS20120470.
    1. Maersk M., Belza A., Stodkilde-Jorgensen H., Ringgaard S., Chabanova E., Thomsen H., Pedersen S.B., Astrup A., Richelsen B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2012;95:283–289. doi: 10.3945/ajcn.111.022533.
    1. Volynets V., Machann J., Kuper M.A., Maier I.B., Spruss A., Konigsrainer A., Bischoff S.C., Bergheim I. A moderate weight reduction through dietary intervention decreases hepatic fat content in patients with non-alcoholic fatty liver disease (NAFLD): A pilot study. Eur. J. Nutr. 2013;52:527–535. doi: 10.1007/s00394-012-0355-z.
    1. Lanaspa M.A., Ishimoto T., Li N., Cicerchi C., Orlicky D.J., Ruzycki P., Rivard C., Inaba S., Roncal-Jimenez C.A., Bales E.S., et al. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat. Commun. 2013;4:2434.
    1. Lecoultre V., Egli L., Carrel G., Theytaz F., Kreis R., Schneiter P., Boss A., Zwygart K., Le K.A., Bortolotti M., et al. Effects of fructose and glucose overfeeding on hepatic insulin sensitivity and intrahepatic lipids in healthy humans. Obesity. 2013;21:782–785. doi: 10.1002/oby.20377.
    1. Alisi A., Manco M., Devito R., Piemonte F., Nobili V. Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children. J. Pediatr. Gastroenterol. Nutr. 2010;50:645–649. doi: 10.1097/MPG.0b013e3181c7bdf1.
    1. Alessi M.C., Bastelica D., Mavri A., Morange P., Berthet B., Grino M., Juhan-Vague I. Plasma PAI-1 levels are more strongly related to liver steatosis than to adipose tissue accumulation. Arterioscler. Thromb. Vasc. Biol. 2003;23:1262–1268. doi: 10.1161/.
    1. Johnstone A.M., Lobley G.E., Horgan G.W., Bremner D.M., Fyfe C.L., Morrice P.C., Duthie G.G. Effects of a high-protein, low-carbohydrate v. high-protein, moderate-carbohydrate weight-loss diet on antioxidant status, endothelial markers and plasma indices of the cardiometabolic profile. Br. J. Nutr. 2011;106:282–291.
    1. Kechagias S., Ernersson A., Dahlqvist O., Lundberg P., Lindstrom T., Nystrom F.H., Fast Food Study Group Fast-food-based hyper-alimentation can induce rapid and profound elevation of serum alanine aminotransferase in healthy subjects. Gut. 2008;57:649–654.

Source: PubMed

3
Subskrybuj