The TGR5 gene is expressed in human subcutaneous adipose tissue and is associated with obesity, weight loss and resting metabolic rate

Per-Arne Svensson, Maja Olsson, Johanna C Andersson-Assarsson, Magdalena Taube, Maria J Pereira, Philippe Froguel, Peter Jacobson, Per-Arne Svensson, Maja Olsson, Johanna C Andersson-Assarsson, Magdalena Taube, Maria J Pereira, Philippe Froguel, Peter Jacobson

Abstract

Bile acids have emerged as a new class of signaling molecules that play a role in metabolism. Studies in mice have shown that the bile acid receptor TGR5 mediates several of these effects but the metabolic function of TGR5 in humans is less well established. Here we show that human adipose tissue TGR5 expression is positively correlated to obesity and reduced during diet-induced weight loss. Adipose tissue TGR5 expression was also positively correlated to resting metabolic rate. Our study indicates that human adipose tissue contributes to the TGR5 mediated metabolic effects of bile acids and plays a role in energy expenditure.

Copyright © 2013 Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Adipose tissue TGR5 expression during weight loss. Twenty-eight obese patients (20 women and 8 men) were treated with a very low caloric diet for 12 weeks. Subcutaneous adipose tissue biopsies were obtained by needle aspiration before the diet (day 0, d0) and after 2, 6 and 12 weeks (w) of diet. TGR5 gene expression was analyzed by real-time PCR and normalized to the reference gene LRP10. Data is presented as mean ± SEM. ∗∗p < 0.0005 compared with d0.
Fig. 2
Fig. 2
TGR5 gene expression in human brown and white adipose tissue. (A) TGR5 expression in BAT containing (BAT+) perithyroid adipose tissue and paired subcutaneous white adipose tissue (s.c. WAT, n = 9). (B) TGR5 expression in perirenal adipose tissue containing BAT (BAT+, n = 10) or only containing white adipose tissue (BAT−, n = 10). Data is presented as mean microarray signal ± SEM. n.s. = not significant. Note: the different signal values are due to different microarray types.

References

    1. Claudel T., Staels B., Kuipers F. The farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler. Thromb. Vasc. Biol. 2005;25:2020–2030.
    1. Maruyama T., Miyamoto Y., Nakamura T., Tamai Y., Okada H., Sugiyama E., Itadani H., Tanaka K. Identification of membrane-type receptor for bile acids (M-BAR) Biochem. Biophys. Res. Commun. 2002;298:714–719.
    1. Watanabe M., Houten S.M., Mataki C., Christoffolete M.A., Kim B.W., Sato H., Messaddeq N., Harney J.W., Ezaki O., Kodama T., Schoonjans K., Bianco A.C., Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–489.
    1. Thomas C., Gioiello A., Noriega L., Strehle A., Oury J., Rizzo G., Macchiarulo A., Yamamoto H., Mataki C., Pruzanski M., Pellicciari R., Auwerx J., Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–177.
    1. Carlsson L.M., Jacobson P., Walley A., Froguel P., Sjöström L., Svensson P.A., Sjöholm K. ALK7 expression is specific for adipose tissue, reduced in obesity and correlates to factors implicated in metabolic disease. Biochem. Biophys. Res. Commun. 2009;382:309–314.
    1. Nookaew I., Svensson P.A., Jacobson P., Jernås M., Taube M., Larsson I., Andersson-Assarsson J.C., Sjöström L., Froguel P., Walley A., Nielsen J., Carlsson L.M. Adipose tissue resting energy expenditure and expression of genes involved in mitochondrial function are higher in women than in men. J. Clin. Endocrinol. Metab. 2012;98:E370–E378.
    1. Saiki A., Olsson M., Jernås M., Gummesson A., McTernan P.G., Andersson J., Jacobson P., Sjöholm K., Olsson B., Yamamura S., Walley A., Froguel P., Carlsson B., Sjöström L., Svensson P.A., Carlsson L.M. Tenomodulin is highly expressed in adipose tissue, increased in obesity, and down-regulated during diet-induced weight loss. J. Clin. Endocrinol. Metab. 2009;94:3987–3994.
    1. Magnusson B., Gummesson A., Glad C.A., Goedecke J.H., Jernås M., Lystig T.C., Carlsson B., Fagerberg B., Carlsson L.M., Svensson P.A. Cell death-inducing DFF45-like effector C is reduced by caloric restriction and regulates adipocyte lipid metabolism. Metabolism. 2008;57:1307–1313.
    1. Svensson P.A., Jernås M., Sjöholm K., Hoffmann J.M., Nilsson B.E., Hansson M., Carlsson L.M. Gene expression in human brown adipose tissue. Int. J. Mol. Med. 2011;27:227–232.
    1. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 1987;162:156–159.
    1. Gabrielsson B.G., Olofsson L.E., Sjogren A., Jernås M., Elander A., Lönn M., Rudemo M., Carlsson L.M. Evaluation of reference genes for studies of gene expression in human adipose tissue. Obes. Res. 2005;13:649–652.
    1. Dennis G., Jr., Sherman B.T., Hosack D.A., Yang J., Gao W., Lane H.C., Lempicki R.A. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:P3.
    1. Huang da W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57.
    1. Zingaretti M.C., Crosta F., Vitali A., Guerrieri M., Frontini A., Cannon B., Nedergaard J., Cinti S. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 2009;23:3113–3120.
    1. Virtanen K.A., Lidell M.E., Orava J., Heglind M., Westergren R., Niemi T., Taittonen M., Laine J., Savisto N.J., Enerback S., Nuutila P. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 2009;360:1518–1525.
    1. Wu J., Bostrom P., Sparks L.M., Ye L., Choi J.H., Giang A.H., Khandekar M., Virtanen K.A., Nuutila P., Schaart G., Huang K., Tu H., van Marken Lichtenbelt W.D., Hoeks J., Enerback S., Schrauwen P., Spiegelman B.M. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–376.
    1. Van Gaal L.F., Vansant G.A., De Leeuw I.H. Factors determining energy expenditure during very-low-calorie diets. Am. J. Clin. Nutr. 1992;56:224S–229S.
    1. Brufau G., Bahr M.J., Staels B., Claudel T., Ockenga J., Boker K.H., Murphy E.J., Prado K., Stellaard F., Manns M.P., Kuipers F., Tietge U.J. Plasma bile acids are not associated with energy metabolism in humans. Nutr. Metab. (Lond.) 2010;7:73.
    1. Hubert H.B., Feinleib M., McNamara P.M., Castelli W.P. Obesity as an independent risk factor for cardiovascular disease: a 26 year follow-up of participants in the Framingham heart study. Circulation. 1983;67:968–977.
    1. Pols T.W., Nomura M., Harach T., Lo Sasso G., Oosterveer M.H., Thomas C., Rizzo G., Gioiello A., Adorini L., Pellicciari R., Auwerx J., Schoonjans K. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 2011;14:747–757.

Source: PubMed

3
Subskrybuj