Microstructural brain injury in post-concussion syndrome after minor head injury

Marion Smits, Gavin C Houston, Diederik W J Dippel, Piotr A Wielopolski, Meike W Vernooij, Peter J Koudstaal, M G Myriam Hunink, Aad van der Lugt, Marion Smits, Gavin C Houston, Diederik W J Dippel, Piotr A Wielopolski, Meike W Vernooij, Peter J Koudstaal, M G Myriam Hunink, Aad van der Lugt

Abstract

Introduction: After minor head injury (MHI), post-concussive symptoms commonly occur. The purpose of this study was to correlate the severity of post-concussive symptoms in MHI patients with MRI measures of microstructural brain injury, namely mean diffusivity (MD) and fractional anisotropy (FA), as well as the presence of microhaemorrhages.

Methods: Twenty MHI patients and 12 healthy controls were scanned at 3 T using diffusion tensor imaging (DTI) and high-resolution gradient recalled echo (HRGRE) T2*-weighted sequences. One patient was excluded from the analysis because of bilateral subdural haematomas. DTI data were preprocessed using Tract Based Spatial Statistics. The resulting MD and FA images were correlated with the severity of post-concussive symptoms evaluated with the Rivermead Postconcussion Symptoms Questionnaire. The number and location of microhaemorrhages were assessed on the HRGRE T2*-weighted images.

Results: Comparing patients with controls, there were no differences in MD. FA was decreased in the right temporal subcortical white matter. MD was increased in association with the severity of post-concussive symptoms in the inferior fronto-occipital fasciculus (IFO), the inferior longitudinal fasciculus and the superior longitudinal fasciculus. FA was reduced in association with the severity of post-concussive symptoms in the uncinate fasciculus, the IFO, the internal capsule and the corpus callosum, as well as in the parietal and frontal subcortical white matter. Microhaemorrhages were observed in one patient only.

Conclusions: The severity of post-concussive symptoms after MHI was significantly correlated with a reduction of white matter integrity, providing evidence of microstructural brain injury as a neuropathological substrate of the post-concussion syndrome.

Figures

Fig. 1
Fig. 1
Mean FA images in axial, coronal and sagittal view showing significantly reduced FA in patients compared with controls in the right temporal lobe subcortical fibres of the inferior fronto-occipital fasciculus
Fig. 2
Fig. 2
Mean fractional anisotropy images in axial, coronal and sagittal view showing significantly increased mean diffusivity in association with the severity of post-concussive symptoms (patient group regression analysis) in the left superior longitudinal fasciculus (a) and inferior fronto-occipital/inferior longitudinal fasciculus (b)
Fig. 3
Fig. 3
Mean FA images in axial, coronal and sagittal view showing areas of significantly reduced FA in association with the severity of post-concussive symptoms (patient group regression analysis) in the peripheral white matter consisting of fibres originating from the corpus callosum in the right frontal lobe (a), the right uncinate and inferior fronto-occipital fasciculus and left internal capsule (b), the posterior limb of the internal capsule bilaterally (c), the corpus callosum (d), and the peripheral white matter consisting of fibres originating from the corpus callosum in the left parietal lobe (e)
Fig. 4
Fig. 4
Three-dimensional, high-resolution gradient recalled echo T2*-weighted images from one patient showing two microhaemorrhages (arrows) in the right frontal lobe

References

    1. Cassidy J, Carroll L, Peloso P, Borg J, von Holst H et al (2004) Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med (43 Suppl):28–60 (Feb)
    1. Alexander MP. Mild traumatic brain injury: pathophysiology, natural history, and clinical management. Neurology. 1995;45:1253–1260.
    1. Alexander MP. Minor traumatic brain injury: a review of physiogenesis and psychogenesis. Semin Clin Neuropsychiatry. 1997;2:177–187.
    1. Dikmen S, McLean A, Temkin N. Neuropsychological and psychosocial consequences of minor head injury. J Neurol Neurosurg Psychiatry. 1986;49:1227–1232. doi: 10.1136/jnnp.49.11.1227.
    1. WHO (1993) The ICD-10 classification of mental and behavioural disorders. Diagnostic criteria for research
    1. Bohnen N, Jolles J, Twijnstra A. Neuropsychological deficits in patients with persistent symptoms six months after mild head injury. Neurosurgery. 1992;30:692–696. doi: 10.1227/00006123-199205000-00007.
    1. Cicerone KD, Azulay J. Diagnostic utility of attention measures in postconcussion syndrome. Clin Neuropsychol. 2002;16:280–289.
    1. Bohnen N, Twijnstra A, Jolles J. Performance in the Stroop color word test in relationship to the persistence of symptoms following mild head injury. Acta Neurol Scand. 1992;85:116–121. doi: 10.1111/j.1600-0404.1992.tb04009.x.
    1. Hofman PAM, Stapert SZ, MJPGv K, Jolles J, Jd K, et al. MR imaging, single-photon emission CT, and neurocognitive performance after mild traumatic brain injury. Am J Neuroradiol. 2001;22:441–449.
    1. Bohnen N, Jolles J. Neurobehavioral aspects of postconcussive symptoms after mild head injury. J Nerv Ment Dis. 1992;180:683–692. doi: 10.1097/00005053-199211000-00002.
    1. Bazarian JJ, Wong T, Harris M, Leahey N, Mookerjee S, et al. Epidemiology and predictors of post-concussive syndrome after minor head injury in an emergency population. Brain Inj. 1999;13:173–189. doi: 10.1080/026990599121692.
    1. Bigler ED. Distinguished neuropsychologist award lecture 1999. The lesion(s) in traumatic brain injury: implications for clinical neuropsychology. Arch Clin Neuropsychol. 2001;16:95–131.
    1. Bigler ED. Neurobiology and neuropathology underlie the neuropsychological deficits associated with traumatic brain injury. Arch Clin Neuropsychol. 2003;18:595–621.
    1. Lishman WA. Physiogenesis and psychogenesis in the ‘post-concussional syndrome’. Br J Psychiatry. 1988;153:460–469. doi: 10.1192/bjp.153.4.460.
    1. King N. Mild head injury: neuropathology, sequelae, measurement and recovery. Br J Clin Psychol. 1997;36(Pt 2):161–184. doi: 10.1111/j.2044-8260.1997.tb01405.x.
    1. Szymanski HV, Linn R. A review of the postconcussion syndrome. Int J Psychiatry Med. 1992;22:357–375.
    1. Metting Z, Rodiger LA, Stewart RE, Oudkerk M, De Keyser J, et al. Perfusion computed tomography in the acute phase of mild head injury: regional dysfunction and prognostic value. Ann Neurol. 2009;66:809–816. doi: 10.1002/ana.21785.
    1. Hofman PAM, Verhey FRJ, Wilmink JT, Rozendaal N, Jolles J. Brain lesions in patients visiting a memory clinic with postconcussional sequelae after mild to moderate brain injury. J Neuropsychiatry Clin Neurosci. 2002;14:176–184. doi: 10.1176/appi.neuropsych.14.2.176.
    1. Heitger MH, Jones RD, Macleod AD, Snell DL, Frampton CM, et al. Impaired eye movements in post-concussion syndrome indicate suboptimal brain function beyond the influence of depression, malingering or intellectual ability. Brain. 2009;132:2850–2870. doi: 10.1093/brain/awp181.
    1. Pontifex MB, O’Connor PM, Broglio SP, Hillman CH. The association between mild traumatic brain injury history and cognitive control. Neuropsychologia. 2009;47:3210–3216. doi: 10.1016/j.neuropsychologia.2009.07.021.
    1. Savola O, Hillbom M. Early predictors of post-concussion symptoms in patients with mild head injury. Eur J Neurol. 2002;10:175–181. doi: 10.1046/j.1468-1331.2003.00552.x.
    1. Kruijk JRd, Leffers P, Menheere PPCA, Meerhoff S, Rutten J, et al. Prediction of post-traumatic complaints after mild traumatic brain injury: early symptoms and biochemical markers. J Neurol Neurosurg Psychiatry. 2002;73:727–732. doi: 10.1136/jnnp.73.6.727.
    1. Lipton ML, Gulko E, Zimmerman ME, Friedman BW, Kim M, et al. Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology. 2009;252:816–824. doi: 10.1148/radiol.2523081584.
    1. Kinoshita T, Moritani T, Hiwatashi A, Wang HZ, Shrier DA, et al. Conspicuity of diffuse axonal injury lesions on diffusion-weighted MR imaging. Eur J Radiol. 2005;56:5–11. doi: 10.1016/j.ejrad.2005.04.001.
    1. Huisman TAGM, Sorensen AG, Hergan K, Gonzalez RG, Schaefer PW. Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr. 2003;27:5–11. doi: 10.1097/00004728-200301000-00002.
    1. Lipton ML, Gellella E, Lo C, Gold T, Ardekani BA, et al. Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: a voxel-wise analysis of diffusion tensor imaging. J Neurotrauma. 2008;25:1335–1342. doi: 10.1089/neu.2008.0547.
    1. Lee H, Wintermark M, Gean AD, Ghajar J, Manley GT, et al. Focal lesions in acute mild traumatic brain injury and neurocognitive outcome: CT versus 3 T MRI. J Neurotrauma. 2008;25:1049–1056. doi: 10.1089/neu.2008.0566.
    1. Rauscher A, Sedlacik J, Barth M, Haacke EM, Reichenbach JR. Nonnvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging. Magn Reson Med. 2005;54:87–95. doi: 10.1002/mrm.20520.
    1. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology. 1997;204:272–277.
    1. Chan JHM, Tsui EYK, Peh WCG, Fong D, Fok KF, et al. Diffuse axonal injury: detection of changes in anisotropy of water diffusion by diffusion-weighted imaging. Neuroradiology. 2003;45:34–38.
    1. Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, et al. Diffusion tensor MR imaging in diffuse axonal injury. Am J Neuroradiol. 2002;23:794–802.
    1. Chappell MH, Ulug AM, Zhang L, Heitger MH, Jordan BD, et al. Distribution of microstructural damage in the brains of professional boxers: a diffusion MRI study. J Magn Reson Imaging. 2006;24:537–542. doi: 10.1002/jmri.20656.
    1. Xu J, Rasmussen IA, Lagopoulos J, Haberg A. Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. J Neurotrauma. 2007;24:753–765. doi: 10.1089/neu.2006.0208.
    1. Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, et al. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain. 2007;130:2508–2519. doi: 10.1093/brain/awm216.
    1. Huisman TA. Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol. 2003;13:2283–2297. doi: 10.1007/s00330-003-1843-6.
    1. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed. 2002;15:456–467. doi: 10.1002/nbm.783.
    1. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:637–648.
    1. Benson RR, Meda SA, Vasudevan S, Kou Z, Govindarajan KA, et al. Global white matter analysis of diffusion tensor images is predictive of injury severity in traumatic brain injury. J Neurotrauma. 2007;24:446–459. doi: 10.1089/neu.2006.0153.
    1. Tong KA, Ashwal S, Holshouser BA, Shutter LA, Herigault G, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology. 2003;227:332–339. doi: 10.1148/radiol.2272020176.
    1. Vernooij M, van der Lugt A, Ikram M, Niessen W, Hofman A, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology. 2008;70:1208–1214. doi: 10.1212/01.wnl.0000307750.41970.d9.
    1. Vernooij M, Ikram M, Wielopolski P, Krestin G, Breteler M, et al. Cerebral microbleeds: accelerated 3D T2*-weighted GRE MR imaging versus conventional 2D T2*-weighted GRE MR imaging for detection. Radiology. 2008;248:272–277. doi: 10.1148/radiol.2481071158.
    1. Folstein MF, Folstein SE, McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. King NS, Crawford S, Wenden FJ, Moss NEG, Wade DT. The Rivermead Post concussion Symptoms Questionnaire: a measure of symptoms commonly experienced after head injury and its reliability. J Neurol. 1995;242:587–592. doi: 10.1007/BF00868811.
    1. Ingebrigtsen T, Waterloo K, Marup-Jendsen S, Attner E, Romner B. Quantification of post-concussion symptoms 3 months after minor head injury in 100 consecutive patients. J Neurol. 1998;245:609–612. doi: 10.1007/s004150050254.
    1. D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, et al. The neural basis of the central executive system of working memory. Nature. 1995;378:279–281. doi: 10.1038/378279a0.
    1. Parizel PM, Ozsarlak, Van Goethoem JW, van den Hauwe L, Dillen C, et al. Imaging findings in diffuse axonal injury after closed head trauma. Eur Radiol. 1998;8:960–965. doi: 10.1007/s003300050496.
    1. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31:1487–1505. doi: 10.1016/j.neuroimage.2006.02.024.
    1. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.
    1. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17:143–155. doi: 10.1002/hbm.10062.
    1. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, et al. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999;18:712–721. doi: 10.1109/42.796284.
    1. Rueckert D (2007) Image registration toolkit. , accessed 6 January 2008
    1. Hermoye L, Laurent J-P, Cosnard G, Wakana S, Jiang H et al. (2004). DTI atlas. , accessed 6 January 2008
    1. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology. 2004;230:77–87. doi: 10.1148/radiol.2301021640.
    1. Mac Donald CL, Dikranian K, Song SK, Bayly PV, Holtzman DM, et al. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp Neurol. 2007;205:116–131. doi: 10.1016/j.expneurol.2007.01.035.
    1. Lo C, Shifteh K, Gold T, Bello JA, Lipton ML. Diffusion tensor imaging abnormalities in patients with mild traumatic brain injury and neurocognitive impairment. J Comput Assist Tomogr. 2009;33:293–297. doi: 10.1097/RCT.0b013e31817579d1.
    1. Niogi SN, Mukherjee P, Ghajar J, Johnson C, Kolster RA, et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3 T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol. 2008;29:967–973. doi: 10.3174/ajnr.A0970.
    1. Inglese M, Makani S, Johnson G, Cohen BA, Silver JA, et al. Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg. 2005;103:298–303. doi: 10.3171/jns.2005.103.2.0298.
    1. Ito J, Marmarou A, Barzo P, Fatouros P, Corwin F. Characterization of edema by diffusion-weighted imaging in experimental traumatic brain injury. J Neurosurg. 1996;84:97–103. doi: 10.3171/jns.1996.84.1.0097.
    1. Messé A, Caplain S, Paradot G, Garrigue D, Mineo J-F et al. (2010) Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Hum Brain Mapp. doi:10.1002/hbm.21092
    1. Salmond CH, Menon DK, Chatfield DA, Williams GB, Pena A, et al. Diffusion tensor imaging in chronic head injury survivors: correlations with learning and memory indices. Neuroimage. 2006;29:117–124. doi: 10.1016/j.neuroimage.2005.07.012.
    1. Nakayama N, Okumura A, Shinoda J, Yasokawa YT, Miwa K, et al. Evidence for white matter disruption in traumatic brain injury without macroscopic lesions. J Neurol Neurosurg Psychiatry. 2006;77:850–855. doi: 10.1136/jnnp.2005.077875.
    1. Wu TC, Wilde EA, Bigler ED, Yallampalli R, McCauley SR, et al. Evaluating the relationship between memory functioning and cingulum bundles in acute mild traumatic brain injury using diffusion tensor imaging. J Neurotrauma. 2010;27:303–307. doi: 10.1089/neu.2009.1110.
    1. Bazarian JJ, Zhong J, Blyth B, Zhu T, Kavcic V, et al. Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study. J Neurotrauma. 2007;24:1447–1459. doi: 10.1089/neu.2007.0241.
    1. Chu Z, Wilde EA, Hunter JV, McCauley SR, Bigler ED, et al. Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents. AJNR Am J Neuroradiol. 2010;31:340–346. doi: 10.3174/ajnr.A1806.
    1. Mayer AR, Ling J, Mannell MV, Gasparovic C, Phillips JP, et al. A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology. 2010;74:643–650. doi: 10.1212/WNL.0b013e3181d0ccdd.
    1. Wilde EA, McCauley SR, Hunter JV, Bigler ED, Chu Z, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology. 2008;70:948–955. doi: 10.1212/01.wnl.0000305961.68029.54.
    1. Miles L, Grossman RI, Johnson G, Babb JS, Diller L, et al. Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Inj. 2008;22:115–122. doi: 10.1080/02699050801888816.
    1. Smits M, Dippel DWJ, Houston GC, Wielopolski PA, Koudstaal PJ, et al. Postconcussion syndrome after minor head injury: brain activation of working memory and attention. Hum Brain Mapp. 2009;30:2789–2803. doi: 10.1002/hbm.20709.

Source: PubMed

3
Subskrybuj