The MONARCH intervention to enhance the quality of antenatal and postnatal primary health services in rural South Africa: protocol for a stepped-wedge cluster-randomised controlled trial

Terusha Chetty, H Manisha N Yapa, Carina Herbst, Pascal Geldsetzer, Kevindra K Naidu, Jan-Walter De Neve, Kobus Herbst, Philippa Matthews, Deenan Pillay, Sally Wyke, Till Bärnighausen, MONARCH study team, Terusha Chetty, H Manisha N Yapa, Carina Herbst, Pascal Geldsetzer, Kevindra K Naidu, Jan-Walter De Neve, Kobus Herbst, Philippa Matthews, Deenan Pillay, Sally Wyke, Till Bärnighausen, MONARCH study team

Abstract

Background: Gaps in maternal and child health services can slow progress towards achieving the Sustainable Development Goals. The Management and Optimization of Nutrition, Antenatal, Reproductive, Child Health & HIV Care (MONARCH) study will evaluate a Continuous Quality Improvement (CQI) intervention targeted at improving antenatal and postnatal health service outcomes in rural South Africa where HIV prevalence among pregnant women is extremely high. Specifically, it will establish the effectiveness of CQI on viral load (VL) testing in pregnant women who are HIV-positive and repeat HIV testing in pregnant women who are HIV-negative.

Methods: This is a stepped-wedge cluster-randomised controlled trial (RCT) of 7 nurse-led primary healthcare clinics to establish the effect of CQI on selected routine antenatal and postnatal services. Each clinic was a cluster, with the exception of the two smallest clinics, which jointly formed one cluster. The intervention was applied at the cluster level, where staff received training on CQI methodology and additional mentoring as required. In the control exposure state, the clusters received the South African Department of Health standard of care. After a baseline data collection period of 2 months, the first cluster crossed over from control to intervention exposure state; subsequently, one additional cluster crossed over every 2 months. The six clusters were divided into 3 groups by patient volume (low, medium and high). We randomised the six clusters to the sequences of crossing over, such that both the first three and the last three sequences included one cluster with low, one with medium, and one with high patient volume. The primary outcome measures were (i) viral load testing among pregnant women who were HIV-positive, and (ii) repeat HIV testing among pregnant women who were HIV-negative. Consenting women ≥18 years attending antenatal and postnatal care during the data collection period completed outcome measures at delivery, and postpartum at three to 6 days, and 6 weeks. Data collection started on 15 July 2015. The total study duration, including pre- and post-exposure phases, was 19 months. Data will be analyzed by intention-to-treat based on first booked clinic of study participants.

Discussion: The results of the MONARCH trial will establish the effectiveness of CQI in improving antenatal and postnatal clinic processes in primary care in sub-Saharan Africa. More generally, the results will contribute to our knowledge on quality improvement interventions in resource-poor settings.

Trial registration: This trial was registered on 10 December 2015: www.clinicaltrials.gov, identifier NCT02626351 .

Keywords: Continuous quality improvement; HIV; Health systems; Maternal; Randomised trial; Stepped wedge.

Conflict of interest statement

Ethical approval for the study was obtained from the University of KwaZulu-Natal Biomedical Research Ethics Committee (BREC, ref. BE209/14). Additional BREC approvals at AHRI include approval for the retrospective review of routine clinical data in Hlabisa and Mtubatuba local municipalities (BE 066/07), and linkage of routine ART programme data to the AHRI Demographic Information System (BE 134/06). Prior to commencing the intervention a meeting was held with sub-district and district-level DoH staff to share study objectives and introduce the intervention. This was in addition to standard sub-district and provincial DoH approvals required to commence the study as part of the AHRI Memorandum of Understanding with DoH.

The MONARCH trial is registered on www.clinicaltrials.gov (NCT02626351).

MCRs were photographed at delivery from eligible women ≥18 years old, excluding the intrapartum section, based on the UKZN BREC waiver of consent for accessing routine DoH data. Consent was obtained from eligible women ≥18 years old for interviews and taking photographs of their infant’s RtHB at delivery, 3–6 day and 6-week postnatal visits. Consent was also obtained from healthcare providers prior to their participation in structured and semi-structured interviews.

Whilst this is deemed a low-risk study, an independent Data Safety and Monitoring Board (DSMB) was formed and met twice yearly to review study progress, adherence to the protocol and safety of study participants. All DSMB members (including a biostatistician) are based in South Africa. As the study was not anticipated to cause significant adverse effects, a closed session with by-arm analyses was planned only if concerns were raised on aggregate data (focusing on the primary endpoints) presented at open sessions.

Not applicable

The authors declare they have no competing interests.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The Africa Health Research Institute study site at Somkhele. Location of the MONARCH study. Based on: Tanser et al. 2008 [46]
Fig. 2
Fig. 2
The MONARCH stepped wedge study design. Clinics provided baseline (pre-intervention) data until each rolled over to the intervention in random order. All clinics provided data continuously throughout the study period. Baseline data collection across all clinics occurred from 15 July 2015 to 28 September 2015 (Step 0). As data extraction on antenatal visits was retrospective from the point of delivery, the baseline observation period covered an additional ~ 6 months for the first recruited participants – thus Step 0 covered a duration of ~ 8 months

References

    1. UNAIDS . Progress Report on the Global Plan 2015. 2015.
    1. National Department of Health SA . 2012 National Antenatal Sentinel HIV & Herpes Simplex Type-2 Prevalence Survey in South Africa. 2014.
    1. McNairy ML, Teasdale CA, El-Sadr WM, Mave V, Abrams EJ. Mother and child both matter: reconceptualizing the prevention of mother-to-child transmission care continuum. Curr Opin HIV AIDS. 2015;10:403–410. doi: 10.1097/COH.0000000000000199.
    1. Myer L, Dunning L, Lesosky M, Hsiao NY, Phillips T, Petro G, Zerbe A, McIntyre JA, Abrams EJ. Frequency of Viremic episodes in HIV-infected women initiating antiretroviral therapy during pregnancy: a cohort study. Clin Infect Dis. 2017;64:422–427.
    1. Koss CA, Natureeba P, Kwarisiima D, Ogena M, Clark TD, Olwoch P, Cohan D, Okiring J, Charlebois ED, Kamya MR, et al. Viral suppression and retention in care up to 5 years after initiation of lifelong ART during pregnancy (option B+) in rural Uganda. J Acquir Immune Defic Syndr. 2017;74:279–284. doi: 10.1097/QAI.0000000000001228.
    1. Warszawski J, Tubiana R, Le Chenadec J, Blanche S, Teglas JP, Dollfus C, Faye A, Burgard M, Rouzioux C, Mandelbrot L, et al. Mother-to-child HIV transmission despite antiretroviral therapy in the ANRS French perinatal cohort. AIDS. 2008;22:289–299. doi: 10.1097/QAD.0b013e3282f3d63c.
    1. Mother-to-child transmission of HIV [].
    1. Myer L, Essajee S, Broyles LN, Watts DH, Lesosky M, El-Sadr WM, Abrams EJ. Pregnant and breastfeeding women: a priority population for HIV viral load monitoring. PLoS Med. 2017;14:e1002375. doi: 10.1371/journal.pmed.1002375.
    1. McMahon JH, Elliott JH, Bertagnolio S, Kubiak R, Jordan MR. Viral suppression after 12 months of antiretroviral therapy in low- and middle-income countries: a systematic review. Bull World Health Organ. 2013;91:377–385E. doi: 10.2471/BLT.12.112946.
    1. Maman D, Huerga H, Mukui I, Chilima B, Kirubi B, Van Cutsem G, Masiku C, Szumilin E, Ellman T, Etard J-F. Most Breastfeeding Women With High Viral Load Are Still Undiagnosed in Sub-Saharan Africa. In: Conference of Retroviruses and Opportunistic Infections: 2015; Seattle, Washington: Abstract number 32; 2015.
    1. National Department of Health SA . National Consolidated Guidelines for the Prevention of Mother-to-Child Transmission of HIV (PMTCT) and the Management of HIV in Children, Adolescents and Adults. Pretoria: National Department of Health; 2015.
    1. Goga A, Chirinda W, Ngandu NK, Ngoma K, Bhardwaj S, Feucht U, Davies N, Ntloana M, Mhlongo O, Silere-Maqetseba T, et al. Closing the gaps to eliminate mother-to-child transmission of HIV (MTCT) in South Africa- understanding MTCT case rates, factors that hinder the monitoring and attainment of targets, and potential game changers. S Afr Med J. 2018;108(Suppl 1):S17–S24. doi: 10.7196/SAMJ.2017.v108i3b.12817.
    1. Swannet S, Decroo T, de Castro S, Rose C, Giuliani R, Molfino L, Torrens AW, Macueia W, Perry S, Reid T. Journey towards universal viral load monitoring in Maputo, Mozambique: many gaps, but encouraging signs. Int Health. 2017;9:206–214. doi: 10.1093/inthealth/ihx021.
    1. Moyo F, Haeri Mazanderani A, Bhardwaj S, Mhlongo OB, Kufa T, Ng'oma K, Smith BA, Sherman GG. Near-real-time tracking of gaps in prevention of mother-to-child transmission of HIV in three districts of KwaZulu-Natal Province, South Africa. S Afr Med J. 2018;108:319–324. doi: 10.7196/SAMJ.2018.v108i4.12630.
    1. Haas AD, Keiser O, Balestre E, Brown S, Bissagnene E, Chimbetete C, Dabis F, Davies M-A, Hoffmann CJ, Oyaro P, et al. Monitoring and switching of first-line antiretroviral therapy in adult treatment cohorts in sub-Saharan Africa: collaborative analysis. Lancet HIV. 2015;2:e271–e278. doi: 10.1016/S2352-3018(15)00087-9.
    1. Drake AL, Wagner A, Richardson B, John-Stewart G. Incident HIV during pregnancy and postpartum and risk of mother-to-child HIV transmission: a systematic review and meta-analysis. PLoS Med. 2014;11:e1001608. doi: 10.1371/journal.pmed.1001608.
    1. Dinh TH, Delaney KP, Goga A, Jackson D, Lombard C, Woldesenbet S, Mogashoa M, Pillay Y, Shaffer N. Impact of maternal HIV seroconversion during pregnancy on early mother to child transmission of HIV (MTCT) measured at 4-8 weeks postpartum in South Africa 2011-2012: a National Population-Based Evaluation. PLoS One. 2015;10:e0125525. doi: 10.1371/journal.pone.0125525.
    1. WHO. Consolidated Guidelines on the Use of Antiretroviral drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach. In., vol. 2nd edition: Geneva: World Health Organization; 2016.
    1. Heemelaar S, Habets N, Makukula Z, van Roosmalen J, van den Akker T. Repeat HIV testing during pregnancy and delivery: missed opportunities in a rural district hospital in Zambia. Tropical Med Int Health. 2015;20:277–283. doi: 10.1111/tmi.12432.
    1. Rogers AJ, Akama E, Weke E, Blackburn J, Owino G, Bukusi EA, Oyaro P, Kwena ZA, Cohen CR, Turan JM. Implementation of repeat HIV testing during pregnancy in southwestern Kenya: progress and missed opportunities. J Int AIDS Soc. 2017;20:e25036. doi: 10.1002/jia2.25036.
    1. Clouse K, Pettifor A, Shearer K, Maskew M, Bassett J, Larson B, Van Rie A, Sanne I, Fox MP. Loss to follow-up before and after delivery among women testing HIV positive during pregnancy in Johannesburg, South Africa. Tropical Med Int Health. 2013;18:451–460. doi: 10.1111/tmi.12072.
    1. Larsen A, Cheyip M, Aynalem G, Dinh TH, Jackson D, Ngandu N, Chirinda W, Mogashoa M, Kindra G, Lombard C, et al. Uptake and predictors of early postnatal follow-up care amongst mother-baby pairs in South Africa: results from three population-based surveys, 2010-2013. J Glob Health. 2017;7(2):021001. doi: 10.7189/jogh.07.021001.
    1. Cantiello J, Kitsantas P, Moncada S, Abdul S. The evolution of quality improvement in healthcare: patient-centered care and health information technology applications. J Hosp Admin. 2016;5:62–68.
    1. Kelly DL, Johnson SP, Sollecito WA. Measurement, variation, and CQI tools. In: Sollecito WA, Johnson JK, editors. McLaughlin and Kaluzny’s Continuous Quality Improvement In Health Care. 4 edn. Burlington: Jones & Bartlett Learning; 2011.
    1. Leatherman S, Ferris TG, Berwick D, Omaswa F, Crisp N. The role of quality improvement in strengthening health systems in developing countries. Int J Qual Health Care. 2010;22:237–243. doi: 10.1093/intqhc/mzq028.
    1. Ferguson TB, Peterson ED, Coombs LP, Eiken MC, Carey ML, Grover FL, DeLong ER. Use of continuous quality improvement to increase use of process measures in patients undergoing coronary artery bypass graft surgery. A randomized controlled trial. J Am Med Assoc. 2003;290:49–56. doi: 10.1001/jama.290.1.49.
    1. Lee SK, Aziz K, Singhal N, Cronin CM, James A, Lee DS, Matthew D, Ohlsson A, Sankaran K, Seshia M, et al. Improving the quality of care for infants: a cluster randomized controlled trial. CMAJ. 2009;181:469–476. doi: 10.1503/cmaj.081727.
    1. Williams JB, Delong ER, Peterson ED, Dokholyan RS, Ou FS, Ferguson TB, Jr, Society of Thoracic S, the National Cardiac D Secondary prevention after coronary artery bypass graft surgery: findings of a national randomized controlled trial and sustained society-led incorporation into practice. Circulation. 2011;123:39–45. doi: 10.1161/CIRCULATIONAHA.110.981068.
    1. Mate KS, Ngubane G, Barker PM. A quality improvement model for the rapid scale-up of a program to prevent mother-to-child HIV transmission in South Africa. Int J Qual Health Care. 2013;25:373–380. doi: 10.1093/intqhc/mzt039.
    1. Magge H, Kiflie A, Mulissa Z, Abate M, Biadgo A, Bitewulign B, Alemu H, Brooks K, Mohammed H, Burssa D. Launching the Ethiopia health care quality initiative: interim results and initial lessons learned. BMJ Open Qual. 2017;6(Suppl 1):A1–A39.
    1. Singh K, Brodish P, Speizer I, Barker P, Amenga-Etego I, Dasoberi I, Kanyoke E, Boadu EA, Yabang E, Sodzi-Tettey S. Can a quality improvement project impact maternal and child health outcomes at scale in northern Ghana? Health Res Policy Systems. 2016;14:45. doi: 10.1186/s12961-016-0115-2.
    1. Bolender, T. How to Close the Mental Health Gap in Low- and Middle-Income Countries [].
    1. Mutanda P, Muange P,Lutta M, Kinyua K, Chebet L, Okaka B, Mwamzandi Y, Mwamvita J. 2017. Improving prevention of mother to child transmission of HIV care: Experiences from implementing quality improvement in Kenya. Technical Report. Published by the USAID ASSIST Project. Chevy Chase, MD: University Research Co., LLC (URC).
    1. Oyeledun B, Phillips A, Oronsaye F, Alo OD, Shaffer N, Osibo B, Imarhiagbe C, Ogirima F, Ajibola A, Ezebuka O, et al. The Effect of a Continuous Quality Improvement Intervention on Retention-In-Care at 6 Months Postpartum in a PMTCT Program in Northern Nigeria: Results of a Cluster Randomized Controlled Study. J Acquir Immune Defic Syndr. 2017;75(Suppl 2):S156–S164. doi: 10.1097/QAI.0000000000001363.
    1. Colbourn T, Nambiar B, Bondo A, Makwenda C, Tsetekani E, Makonda-Ridley A, Msukwa M, Barker P, Kotagal U, Williams C, et al. Effects of quality improvement in health facilities and community mobilization through women’s groups on maternal, neonatal and perinatal mortality in three districts of Malawi: MaiKhanda, a cluster randomized controlled effectiveness trial. Int Health. 2013;5:180–195. doi: 10.1093/inthealth/iht011.
    1. Massyn N, Day C, Peer N, Padarath A, Barron P, English M. District health barometer 2013/2014. Durban: Health Systems Trust; 2014.
    1. Moultrie TA, Hosegood V, McGrath N, Hill C, Herbst K, Newell ML. Refining the criteria for stalled fertility declines- an application to rural KwaZulu-Natal, South Africa, 1990–2005. Stud Fam Plan. 2008;39:39–48. doi: 10.1111/j.1728-4465.2008.00149.x.
    1. Institute for Healthcare Improvement . The breakthrough series: IHI’s collaborative model for achieving breakthrough improvement. Boston: IHI Innovation Series white paper; 2003.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) - a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Barnhart D, Hertzmark E, Liu E, Mungure E, Muya AN, Sando D, Chalamilla G, Ulenga N, Bärnighausen T, Fawzi W, et al. Intra-cluster correlation estimates for HIV-related outcomes from care and treatment clinics in Dar Es Salaam, Tanzania. Contemp Clin Trials Commun. 2016;4:161–9.
    1. Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials. 2007;28:182–191. doi: 10.1016/j.cct.2006.05.007.
    1. Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159:702–706. doi: 10.1093/aje/kwh090.
    1. Hemming K, Taljaard M, Forbes A. Analysis of cluster randomised stepped wedge trials with repeated cross-sectional samples. Trials. 2017;18:101. doi: 10.1186/s13063-017-1833-7.
    1. Berwick D. Developing and testing changes in delivery of care. Ann Intern Med. 1998;128:651–656. doi: 10.7326/0003-4819-128-8-199804150-00009.
    1. Dieleman M, Gerretsen B, van der Wilt GJ. Human resource management interventions to improve health workers’ performance in low and middle income countries: a realist review. Health Res Policy Syst. 2009;7:7. doi: 10.1186/1478-4505-7-7.
    1. Tanser F, Hosegood V, Bärnighausen T, Herbst K, Nyirenda M, Muhwava W, Newell C, Viljoen J, Mutevedzi T, Newell ML. Cohort profile: Africa Centre demographic information system (ACDIS) and population-based HIV survey. Int J Epidemiol. 2008;37:956–62.

Source: PubMed

3
Subskrybuj