Phase 1/2 study of epacadostat in combination with ipilimumab in patients with unresectable or metastatic melanoma

Geoffrey T Gibney, Omid Hamid, Jose Lutzky, Anthony J Olszanski, Tara C Mitchell, Thomas F Gajewski, Bartosz Chmielowski, Brent A Hanks, Yufan Zhao, Robert C Newton, Janet Maleski, Lance Leopold, Jeffrey S Weber, Geoffrey T Gibney, Omid Hamid, Jose Lutzky, Anthony J Olszanski, Tara C Mitchell, Thomas F Gajewski, Bartosz Chmielowski, Brent A Hanks, Yufan Zhao, Robert C Newton, Janet Maleski, Lance Leopold, Jeffrey S Weber

Abstract

Background: Epacadostat is a potent inhibitor of the immunosuppressive indoleamine 2,3-dioxygenase 1 (IDO1) enzyme. We present phase 1 results from a phase 1/2 clinical study of epacadostat in combination with ipilimumab, an anti-cytotoxic T-lymphocyte-associated protein 4 antibody, in advanced melanoma (NCT01604889).

Methods: Only the phase 1, open-label portion of the study was conducted, per the sponsor's decision to terminate the study early based on the changing melanoma treatment landscape favoring exploration of programmed cell death protein 1 (PD-1)/PD-ligand 1 inhibitor-based combination strategies. Such decision was not related to the safety of epacadostat plus ipilimumab. Patients received oral epacadostat (25, 50, 100, or 300 mg twice daily [BID]; 75 mg daily [50 mg AM, 25 mg PM]; or 50 mg BID intermittent [2 weeks on/1 week off]) plus intravenous ipilimumab 3 mg/kg every 3 weeks.

Results: Fifty patients received ≥1 dose of epacadostat. As of January 20, 2017, 2 patients completed treatment and 48 discontinued, primarily because of adverse events (AEs) and disease progression (n = 20 each). Dose-limiting toxicities occurred in 11 patients (n = 1 each with epacadostat 25 mg BID, 50 mg BID intermittent, 75 mg daily; n = 4 each with epacadostat 50 mg BID, 300 mg BID). The most common immune-related treatment-emergent AEs included rash (50%), alanine aminotransferase elevation (28%), pruritus (28%), aspartate aminotransferase elevation (24%), and hypothyroidism (10%). Among immunotherapy-naive patients (n = 39), the objective response rate was 26% by immune-related response criteria and 23% by Response Evaluation Criteria in Solid Tumors version 1.1. No objective response was seen in the 11 patients who received prior immunotherapy. Epacadostat exposure was dose proportional, with clinically significant IDO1 inhibition at doses ≥25 mg BID.

Conclusions: When combined with ipilimumab, epacadostat ≤50 mg BID demonstrated clinical and pharmacologic activity and was generally well tolerated in patients with advanced melanoma.

Trial registration: ClinicalTrials.gov identifier, NCT01604889 . Registration date, May 9, 2012, retrospectively registered.

Keywords: Epacadostat; IDO1; Immune checkpoint inhibition; Ipilimumab; Melanoma.

Conflict of interest statement

Ethics approval and consent to participate

This report was conducted in accordance with the provisions of the Declaration of Helsinki, as described in the International Council for Harmonisation Guidelines for Good Clinical Practice, and was approved by the institutional review board at each participating institution. All patients provided informed consent before initiation of treatment.

Consent for publication

Not applicable.

Competing interests

GTG served as a consultant for Array BioPharma, Genentech, Novartis, Incyte Corporation, Newlink Genetics, Jounce, and Bristol-Myers Squibb; and served on a speakers bureau for Genentech. OH served consulting or advisory roles with Amgen, Novartis, Roche, Bristol-Myers Squibb, and Merck; served on speakers bureaus for Bristol-Myers Squibb, Genentech, Novartis, and Amgen; and received research funding from AstraZeneca, Bristol-Myers Squibb, Celldex, Genentech, Immunocore, Incyte, Merck, Merck Serono, MedImmune, Novartis, Pfizer, Rinat, and Roche. JL served as an advisory board consultant for Bristol-Myers Squibb. AJO served consulting or advisory roles with Merck, Takeda, Bristol-Myers Squibb, and G1 Therapeutics; received research funding from Takeda, Immunocore, EMD Serono, Amgen, Incyte, Kyowa Hakko Kirin, Lilly, Advaxis, Mirati Therapeutics, Ignyta, Novartis, Pfizer, Bristol-Myers Squibb, and Kura; and received travel/accommodation expenses from Takeda. TCM served consulting or advisory roles with Novartis, Bristol-Myers Squibb, Merck, and Incyte; and received research funding from Merck, Incyte, Bristol-Myers Squibb, and Roche. TFG has received consultancy fees from Merck, Roche-Genentech, AbbVie, Bayer, Jounce, Aduro, Fog Pharma, Adaptimmune, FivePrime, and Sanofi; has received research support from Roche-Genentech, Bristol-Myers Squibb, Merck, Incyte, Seattle Genetics, Celldex, Ono, Evelo, Bayer, and Aduro; has intellectual property/licensing agreements with Aduro, Evelo, and Bristol-Myers Squibb; and is a cofounder/shareholder with Jounce. BC has nothing to disclose. BAH received research funding from Merck, OncoMed Pharmaceuticals, MedPacto Inc., GlaxoSmithKline, AstraZeneca, D3 A*STAR, and Tempest; served consulting or advisory roles for G1 Therapeutics and FujiFilm Pharmaceuticals; and served on speakers bureaus for CE Concepts and Merck. YZ was an employee and stockholder of Incyte Corporation at the time of data analysis. RCN, JM, and LL are employees and stockholders of Incyte Corporation. JSW owns equity in Biond, Altor, and CytomX; is named on patents for Biodesix (PD-1 biomarker) and Moffitt (CTLA-4 biomarker; neither of which were used in the current work); and has received consulting fees for advisory boards for Bristol-Myers Squibb, GlaxoSmithKline, Merck, Novartis, Incyte Corporation, Genentech, AstraZeneca, Celldex, Sellas, CytomX, EMD Serono, and Pfizer.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Change From Baseline in Target Lesions in Immunotherapy-Naive Patients by irRC. a Best percentage change from baseline in target lesions and (b) percentage change in target lesions over time. BID, twice daily; irRC, immune-related response criteria. * 50 mg BID intermittent; best change from baseline was 0.98%. Of 39 efficacy-evaluable immunotherapy-naive patients, data are shown for the 31 patients with postbaseline scans that included assessment of target lesions. Y axis values were shown as a maximum of 100% for readability; actual values for the first 4 bars from the left in (a) were 687, 259, 181, and 117%
Fig. 2
Fig. 2
Survival Estimates by Prior Immunotherapy Status. a Kaplan-Meier–estimated PFS by irRC, (b) Kaplan-Meier–estimated PFS by RECIST, and (c) Kaplan-Meier–estimated OS. irRC, immune-related response criteria; NE, not evaluable; OS, overall survival; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors

References

    1. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10. doi: 10.1016/j.immuni.2013.07.012.
    1. Moon YW, Hajjar J, Hwu P, Naing A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J ImmunoTher Cancer. 2015;3:51. doi: 10.1186/s40425-015-0094-9.
    1. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–723. doi: 10.1056/NEJMoa1003466.
    1. YERVOY® (ipilimumab). Full prescribing information, Bristol-Myers Squibb Company. Princeton, NJ; 2017.
    1. Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF, Linette GP, Meyer N, Giguere JK, Agarwala SS, Shaheen M, Ernstoff MS, Minor DR, Salama AK, Taylor MH, Ott PA, Horak C, Gagnier P, Jiang J, Wolchok JD, Postow MA. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016;17:1558–1568. doi: 10.1016/S1470-2045(16)30366-7.
    1. Larkin J, Chiarion-Sileni V, Gonzalez R. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34. doi: 10.1056/NEJMoa1504030.
    1. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment. J Immunother Cancer. 2014;2:3. doi: 10.1186/2051-1426-2-3.
    1. Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K, Leffet L, Hansbury MJ, Thomas B, Rupar M, Waeltz P, Bowman KJ, Polam P, Sparks RB, Yue EW, Li Y, Wynn R, Fridman JS, Burn TC, Combs AP, Newton RC, Scherle PA. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood. 2010;115:3520–3530. doi: 10.1182/blood-2009-09-246124.
    1. Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007;117:1147–1154. doi: 10.1172/JCI31178.
    1. Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP, Merghoub T, Wolchok JD. Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep. 2015;13:412–424. doi: 10.1016/j.celrep.2015.08.077.
    1. Wang XF, Wang HS, Wang H, Zhang F, Wang KF, Guo Q, Zhang G, Cai SH, Du J. The role of indoleamine 2,3-dioxygenase (IDO) in immune tolerance: focus on macrophage polarization of THP-1 cells. Cell Immunol. 2014;289:42–48. doi: 10.1016/j.cellimm.2014.02.005.
    1. Theate I, van Baren N, Pilotte L, Moulin P, Larrieu P, Renauld JC, Herve C, Gutierrez-Roelens I, Marbaix E, Sempoux C, Van den Eynde BJ. Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissues. Cancer Immunol Res. 2015;3:161–172. doi: 10.1158/2326-6066.CIR-14-0137.
    1. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9:1269–1274. doi: 10.1038/nm934.
    1. Zhao Q, Kuang DM, Wu Y, Xiao X, Li XF, Li TJ, Zheng L. Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J Immunol. 2012;188:1117–1124. doi: 10.4049/jimmunol.1100164.
    1. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, Mellor AL. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest. 2004;114:280–290. doi: 10.1172/JCI21583.
    1. Yu CP, Fu SF, Chen X, Ye J, Ye Y, Kong LD, Zhu Z. The clinicopathological and prognostic significance of IDO1 expression in human solid tumors: evidence from a systematic review and meta-analysis. Cell Physiol Biochem. 2018;49:134–143. doi: 10.1159/000492849.
    1. Speeckaert R, Vermaelen K, van Geel N, Autier P, Lambert J, Haspeslagh M, van Gele M, Thielemans K, Neyns B, Roche N, Verbeke N, Deron P, Speeckaert M, Brochez L. Indoleamine 2,3-dioxygenase, a new prognostic marker in sentinel lymph nodes of melanoma patients. Eur J Cancer. 2012;48:2004–2011. doi: 10.1016/j.ejca.2011.09.007.
    1. Beatty GL, O'Dwyer PJ, Clark J, Shi JG, Bowman KJ, Scherle PA, Newton RC, Schaub R, Maleski J, Leopold L, Gajewski TF. First-in-human phase I study of the oral inhibitor of indoleamine 2,3-dioxygenase-1 epacadostat (INCB024360) in patients with advanced solid malignancies. Clin Cancer Res. 2017;23:3269–3276. doi: 10.1158/1078-0432.CCR-16-2272.
    1. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, Dronca R, Gangadhar TC, Patnaik A, Zarour H, Joshua AM, Gergich K, Elassaiss-Schaap J, Algazi A, Mateus C, Boasberg P, Tumeh PC, Chmielowski B, Ebbinghaus SW, Li XN, Kang SP, Ribas A. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–144. doi: 10.1056/NEJMoa1305133.
    1. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A, KEYNOTE-006 Investigators Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–2532. doi: 10.1056/NEJMoa1503093.
    1. Iannone R, Gergich K, Cong C, Kang P, Daud A, Dronca R, Joseph R, Gangadhar T, Hamid O, Kefford R, Hersey P, Patnaik A, Ribas A, Robert C, Weber JS, Wolchok J, Zarour H, Hodi F, Hwu W. Efficacy and safety of MK-3475 in patients with advanced melanoma. Pigm Cell Mel Res. 2012;25:864–865.
    1. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, Patnaik A, Dronca R, Zarour H, Joseph RW, Boasberg P, Chmielowski B, Mateus C, Postow MA, Gergich K, Elassaiss-Schaap J, Li XN, Iannone R, Ebbinghaus SW, Kang SP, Daud A. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–1117. doi: 10.1016/S0140-6736(14)60958-2.
    1. Boyer EW, Shannon M. The serotonin syndrome. N Engl J Med. 2005;352:1112–1120. doi: 10.1056/NEJMra041867.
    1. Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbe C, Maio M, Binder M, Bohnsack O, Nichol G, Humphrey R, Hodi FS. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–7420. doi: 10.1158/1078-0432.CCR-09-1624.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Koblish HK, Hansbury MJ, Bowman KJ, Yang G, Neilan CL, Haley PJ, Burn TC, Waeltz P, Sparks RB, Yue EW, Combs AP, Scherle PA, Vaddi K, Fridman JS. Hydroxyamidine inhibitors of indoleamine-2,3-dioxygenase potently suppress systemic tryptophan catabolism and the growth of IDO-expressing tumors. Mol Cancer Ther. 2010;9:489–498. doi: 10.1158/1535-7163.MCT-09-0628.
    1. Allin KH, Nordestgaard BG. Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit Rev Clin Lab Sci. 2011;48:155–170. doi: 10.3109/10408363.2011.599831.
    1. Shrotriya S, Walsh D, Bennani-Baiti N, Thomas S, Lorton C. C-reactive protein is an important biomarker for prognosis tumor recurrence and treatment response in adult solid tumors: a systematic review. PLoS One. 2015;10:e0143080. doi: 10.1371/journal.pone.0143080.
    1. Schlesinger M, Bendas G. Vascular cell adhesion molecule-1 (VCAM-1)–an increasing insight into its role in tumorigenicity and metastasis. Int J Cancer. 2015;136:2504–2514. doi: 10.1002/ijc.28927.
    1. Long GV, Dummer R, Hamid O, Gajewski T, Caglevic C, Dalle S, Arance A, Carlino M, Grob J-J, Kim MT, Demidov LV, Robert C, Larkin JMG, Anderson J, Maleski JE, Jones MM, Diede SJ, Mitchell TC. Epacadostat plus pembrolizumab versus pembrolizumab alone in patients with unresectable metastatic melanoma: results of the phase 3 ECHO-301/KEYNOTE-252 study. J Clin Oncol. 2018;36(15 suppl):108.

Source: PubMed

3
Subskrybuj