Sex differences and sex steroids influence on the presentation and severity of cardiovascular autonomic neuropathy of patients with type 1 diabetes

Lía Nattero-Chávez, María Insenser, Alejandra Quintero Tobar, Elena Fernández-Durán, Beatriz Dorado Avendaño, Tom Fiers, Jean-Marc Kaufman, Manuel Luque-Ramírez, Héctor F Escobar-Morreale, Lía Nattero-Chávez, María Insenser, Alejandra Quintero Tobar, Elena Fernández-Durán, Beatriz Dorado Avendaño, Tom Fiers, Jean-Marc Kaufman, Manuel Luque-Ramírez, Héctor F Escobar-Morreale

Abstract

Background: Sex differences characterize cardiovascular outcomes in patients with type 1 diabetes. Cardioautonomic neuropathy is a common complication of type 1 diabetes that associates increased morbi-mortality. Data regarding the interplay between sex and cardiovascular autonomic neuropathy are scarce and controversial in these patients. We aimed to address sex-related differences in the prevalence of seemingly asymptomatic cardioautonomic neuropathy in type 1 diabetes, and their associations with sex steroids.

Methods: We conducted a cross-sectional study including 322 consecutively recruited patients with type 1 diabetes. Cardioautonomic neuropathy was diagnosed using Ewing's score and power spectral heart rate data. We assessed sex hormones by liquid chromatography/tandem mass spectrometry.

Results: When considering all subjects as a whole, asymptomatic cardioautonomic neuropathy prevalence was not significantly different between women and men. When age was taken into account, the prevalence of cardioautonomic neuropathy was similar among young men and those > 50 years. However, in women > 50 years, the prevalence of cardioautonomic neuropathy doubled that of young women [45.8% (32.6; 59.7) vs. 20.4% (13.7; 29.2), respectively]. The OR of having cardioautonomic neuropathy was 3.3 higher in women > 50 years than in their younger counterparts. Furthermore, women presented more severe cardioautonomic neuropathy than men. These differences were even more marked when women were classified according their menopausal status instead of age. Peri- and menopausal women had an OR 3.5 (1.7; 7.2) of having CAN compared with their reproductive-aged counterparts [CAN prevalence: 51% (37; 65) vs. 23% (16; 32), respectively]. A binary logistic regression model (R2: 0.161; P = 0.001) displayed age > 50 years as a significant determinant of cardioautonomic neuropathy only in women. Androgens were positively associated with heart rate variability in men, and negatively in women. Accordingly, cardioautonomic neuropathy was associated with increased testosterone/estradiol ratio in women but to decreased testosterone concentrations in men.

Conclusions: Menopause in women with type 1 diabetes is accompanied by an increase in the prevalence of asymptomatic cardioautonomic neuropathy. This age-related excess risk of cardioautonomic neuropathy is not observed in men. Men and women with type 1 diabetes have opposite associations between circulating androgens and indexes of cardioautonomic function. Trial registration ClinicalTrials.gov Identifier: NCT04950634.

Keywords: Autonomic nervous system; Cardioautonomic neuropathy; Cardiovascular disease; Sex differences; Sex hormones; Sex steroids; Sexual dimorphism; Type 1 diabetes mellitus.

© 2023. The Author(s).

References

    1. Regensteiner JG, Golden S, Huebschmann AG, Barrett-Connor E, Chang AY, Chyun D, Fox CS, Kim C, Mehta N, Reckelhoff JF, et al. Sex differences in the cardiovascular consequences of diabetes mellitus: a scientific statement from the american heart association. Circulation. 2015;132(25):2424–47.
    1. Gorodeski GI. Update on cardiovascular disease in post-menopausal women. Best Pract Res Clin Obstet Gynaecol. 2002;16(3):329–55.
    1. Jaiswal M, Divers J, Urbina EM, Dabelea D, Bell RA, Pettitt DJ, Imperatore G, Pihoker C, Dolan LM, Liese AD, et al. Cardiovascular autonomic neuropathy in adolescents and young adults with type 1 and type 2 diabetes: the SEARCH for diabetes in youth cohort study. Pediatr Diabetes. 2018;19:680–9.
    1. Nattero-Chávez L, Alonso Díaz S, Jiménez-Mendiguchia L, García-Cano A, Fernández-Durán E, Dorado Avendaño B, Escobar-Morreale HF, Luque-Ramírez M. Sexual dimorphism and sex steroids influence cardiovascular autonomic neuropathy in patients with type 1 diabetes. Diabetes Care. 2019;42(11):e175–8.
    1. Rosner W, Vesper H. Toward excellence in testosterone testing: a consensus statement. J Clin Endocrinol Metab. 2010;95(10):4542–8.
    1. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S15–33.
    1. Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin Proc. 2012;87(12):1196–201.
    1. Spallone V, Bellavere F, Scionti L, Maule S, Quadri R, Bax G, Melga P, Viviani GL, Esposito K, Morganti R, et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovasc Dis. 2011;21(1):69–78.
    1. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, Sosenko JM, Ziegler D. Diabetic neuropathy: a position statement by the american diabetes association. Diabetes Care. 2017;40(1):136–54.
    1. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985;8(5):491–8.
    1. Kahn R. Proceedings of a consensus development conference on standardized measures in diabetic neuropathy. Autonomic nervous system testing. Diabetes Care. 1992;15(8):1095–103.
    1. Serhiyenko VA, Serhiyenko AA. Cardiac autonomic neuropathy: risk factors, diagnosis and treatment. World J Diabetes. 2018;9(1):1–24.
    1. Duque A, Mediano MFF, De Lorenzo A, Rodrigues LF Jr. Cardiovascular autonomic neuropathy in diabetes: pathophysiology, clinical assessment and implications. World J Diabetes. 2021;12(6):855–67.
    1. Pavy-Le Traon A, Fontaine S, Tap G, Guidolin B, Senard JM, Hanaire H. Cardiovascular autonomic neuropathy and other complications in type 1 diabetes. Clin Auton Res. 2010;20(3):153–60.
    1. Silva TP, Rolim LC, Sallum Filho C, Zimmermann LM, Malerbi F, Dib SA. Association between severity of hypoglycemia and loss of heart rate variability in patients with type 1 diabetes mellitus. Diabetes Metab Res Rev. 2017;33(2):1.
    1. Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, Stevens M, Kempler P, Hilsted J, Tesfaye S, et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27(7):639–53.
    1. Mazer NA. A novel spreadsheet method for calculating the free serum concentrations of testosterone, dihydrotestosterone, estradiol, estrone and cortisol: with illustrative examples from male and female populations. Steroids. 2009;74:512–9.
    1. Calderón B, Gómez-Martín JM, Vega-Piñero B, Martín-Hidalgo A, Galindo J, Luque-Ramírez M, Escobar-Morreale HF, Botella-Carretero JI. Prevalence of male secondary hypogonadism in moderate to severe obesity and its relationship with insulin resistance and excess body weight. Andrology. 2016;4(1):62–7.
    1. Nattero-Chávez L, Redondo López S, Alonso Díaz S, Garnica Ureña M, Fernández-Durán E, Escobar-Morreale HF, Luque-Ramírez M. The peripheral atherosclerotic profile in patients with type 1 diabetes warrants a thorough vascular assessment of asymptomatic patients. Diabetes Metab Res Rev. 2019;35(2): e3088.
    1. McKinlay SM. The normal menopause transition: an overview. Maturitas. 1996;23(2):137–45.
    1. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, Sherman S, Sluss PM, de Villiers TJ. Executive summary of the stages of reproductive aging workshop + 10: addressing the unfinished agenda of staging reproductive aging. J Clin Endocrinol Metab. 2012;97(4):1159–68.
    1. Newcombe RG. Improved confidence intervals for the difference between binomial proportions based on paired data. Stat Med. 1998;17:2635–50.
    1. Pop-Busui R, Braffett BH, Zinman B, Martin C, White NH, Herman WH, Genuth S, Gubitosi-Klug R, Group DER. Cardiovascular autonomic neuropathy and cardiovascular outcomes in the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes Care. 2017;40(1):94–100.
    1. Valensi P, Sachs RN, Harfouche B, Lormeau B, Paries J, Cosson E, Paycha F, Leutenegger M, Attali JR. Predictive value of cardiac autonomic neuropathy in diabetic patients with or without silent myocardial ischemia. Diabetes Care. 2001;24(2):339–43.
    1. Abhishekh HA, Nisarga P, Kisan R, Meghana A, Chandran S, Trichur R, Sathyaprabha TN. Influence of age and gender on autonomic regulation of heart. J Clin Monit Comput. 2013;27(3):259–64.
    1. Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, Colhoun HM. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: a cohort study using the general practice research database. Diabetes Care. 2006;29(4):798–804.
    1. Spallone V. Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet. Diabetes Metab J. 2019;43(1):3–30.
    1. Chen CW, Kuo TB, Chen CY, Yang CC. Reduced capacity of autonomic and baroreflex control associated with sleep pattern in spontaneously hypertensive rats with a nondipping profile. J Hypertens. 2017;35(3):558–70.
    1. Kuo TB, Lin T, Yang CC, Li CL, Chen CF, Chou P. Effect of aging on gender differences in neural control of heart rate. Am J Physiol. 1999;277(6):H2233-2239.
    1. Joyner MJ, Barnes JN, Hart EC, Wallin BG, Charkoudian N. Neural control of the circulation: how sex and age differences interact in humans. Compr Physiol. 2015;5(1):193–215.
    1. Jaiswal M, Urbina EM, Wadwa RP, Talton JW, D’Agostino RB Jr, Hamman RF, Fingerlin TE, Daniels SR, Marcovina SM, Dolan LM, et al. Reduced heart rate variability among youth with type 1 diabetes: the SEARCH CVD study. Diabetes Care. 2013;36:157–62.
    1. Du XJ, Dart AM, Riemersma RA. Sex differences in the parasympathetic nerve control of rat heart. Clin Exp Pharmacol Physiol. 1994;21(6):485–93.
    1. Souza HC, Tezini GC. Autonomic cardiovascular damage during post-menopause: the role of physical training. Aging Dis. 2013;4(6):320–8.
    1. Sverrisdóttir YB, Mogren T, Kataoka J, Janson PO, Stener-Victorin E. Is polycystic ovary syndrome associated with high sympathetic nerve activity and size at birth? Am J Physiol Endocrinol Metab. 2008;294(3):E576-581.
    1. Escobar-Morreale HF, Martínez-García M, Montes-Nieto R, Fernández-Durán E, Temprano-Carazo S, Luque-Ramírez M. Effects of glucose ingestion on circulating inflammatory mediators: influence of sex and weight excess. Clin Nutr. 2017;36(2):522–9.
    1. Rawshani A, Franzen S, Eliasson B, Svensson AM, Miftaraj M, McGuire DK, Sattar N, Rosengren A, Gudbjornsdottir S. Range of risk factor levels: control, mortality, and cardiovascular outcomes in type 1 diabetes mellitus. Circulation. 2017;135(16):1522–31.
    1. Kloner RA, Carson C 3rd, Dobs A, Kopecky S, Mohler ER 3rd. Testosterone and cardiovascular disease. J Am Coll Cardiol. 2016;67(5):545–57.
    1. Rydlewska A, Maj J, Katkowski B, Biel B, Ponikowska B, Banasiak W, Ponikowski P, Jankowska EA. Circulating testosterone and estradiol, autonomic balance and baroreflex sensitivity in middle-aged and elderly men with heart failure. Aging Male. 2013;16(2):58–66.
    1. Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, Miceli M, Mammi C, Piepoli M, Fini M, Rosano GM. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol. 2009;54(10):919–27.
    1. Holt SK, Lopushnyan N, Hotaling J, Sarma AV, Dunn RL, Cleary PA, Braffett BH, Gatcomb P, Martin C, Herman WH, et al. Prevalence of low testosterone and predisposing risk factors in men with type 1 diabetes mellitus: findings from the DCCT/EDIC. J Clin Endocrinol Metab. 2014;99(9):E1655-1660.
    1. Middlekauff HR, Park J, Gornbein JA. Lack of effect of ovarian cycle and oral contraceptives on baroreceptor and nonbaroreceptor control of sympathetic nerve activity in healthy women. Am J Physiol Heart Circ Physiol. 2012;302(12):H2560-2566.

Source: PubMed

3
Subskrybuj