Impaired functional activity of alveolar macrophages from GM-CSF-deficient mice

R Paine 3rd, S B Morris, H Jin, S E Wilcoxen, S M Phare, B B Moore, M J Coffey, G B Toews, R Paine 3rd, S B Morris, H Jin, S E Wilcoxen, S M Phare, B B Moore, M J Coffey, G B Toews

Abstract

We hypothesized that pulmonary granulocyte-macrophage colony-stimulating factor (GM-CSF) is critically involved in determining the functional capabilities of alveolar macrophages (AM) for host defense. To test this hypothesis, cells were collected by lung lavage from GM-CSF mutant mice [GM(-/-)] and C57BL/6 wild-type mice. GM(-/-) mice yielded almost 4-fold more AM than wild-type mice. The percentage of cells positive for the beta(2)-integrins CD11a and CD11c was reduced significantly in GM(-/-) AM compared with wild-type cells, whereas expression of CD11b was similar in the two groups. The phagocytic activity of GM(-/-) AM for FITC-labeled microspheres was impaired significantly compared with that of wild-type AM both in vitro and in vivo (after intratracheal inoculation with FITC-labeled beads). Stimulated secretion of tumor necrosis factor-alpha (TNF-alpha) and leukotrienes by AM from the GM(-/-) mice was greatly reduced compared with wild-type AM, whereas secretion of monocyte chemoattractant protein-1 was increased. Transgenic expression of GM-CSF exclusively in the lungs of GM(-/-) mice resulted in AM with normal or supranormal expression of CD11a and CD11c, phagocytic activity, and TNF-alpha secretion. Thus, in the absence of GM-CSF, AM functional capabilities for host defense were significantly impaired but were restored by lung-specific expression of GM-CSF.

Source: PubMed

3
Subskrybuj