Dose of physical activity, physical functioning and disability risk in mobility-limited older adults: Results from the LIFE study randomized trial

Roger A Fielding, Jack M Guralnik, Abby C King, Marco Pahor, Mary M McDermott, Catrine Tudor-Locke, Todd M Manini, Nancy W Glynn, Anthony P Marsh, Robert S Axtell, Fang-Chi Hsu, W Jack Rejeski, LIFE study group, Roger A Fielding, Jack M Guralnik, Abby C King, Marco Pahor, Mary M McDermott, Catrine Tudor-Locke, Todd M Manini, Nancy W Glynn, Anthony P Marsh, Robert S Axtell, Fang-Chi Hsu, W Jack Rejeski, LIFE study group

Abstract

Understanding the minimal dose of physical activity required to achieve improvement in physical functioning and reductions in disability risk is necessary to inform public health recommendations. To examine the effect of physical activity dose on changes in physical functioning and the onset of major mobility disability in The Lifestyle Interventions and Independence for Elders (LIFE) Study. We conducted a multicenter single masked randomized controlled trial that enrolled participants in 2010 and 2011 and followed them for an average of 2.6 years. 1,635 sedentary men and women aged 70-89 years who had functional limitations were randomized to a structured moderate intensity walking, resistance, and flexibility physical activity program or a health education program. Physical activity dose was assessed by 7-day accelerometry and self-report at baseline and 24 months. Outcomes included the 400 m walk gait speed, the Short Physical Performance Battery (SPPB), assessed at baseline, 6, 12, and 24 months, and onset of major mobility disability (objectively defined by loss of ability to walk 400 m in 15 min). When the physical activity arm or the entire sample were stratified by change in physical activity from baseline to 24 months, there was a dose-dependent increase in the change in gait speed and SPPB from baseline at 6, 12, and 24 months. In addition, the magnitude of change in physical activity over 24 months was related to the reduction in the onset of major mobility disability (overall P < 0.001) (highest versus the lowest quartile of physical activity change HR 0.23 ((95% CI:0.10-0.52) P = 0.001) in the physical activity arm. We observed a dose-dependent effect of objectively monitored physical activity on physical functioning and onset of major mobility disability. Relatively small increases (> 48 minutes per week) in regular physical activity participation had significant and clinically meaningful effects on these outcomes.

Trial registration: ClinicalsTrials.gov NCT00116194.

Conflict of interest statement

Competing Interests: Dr. Fielding reports grants, personal fees and other from Axcella Health, personal fees from Cytokinetics, grants and personal fees from Biophytis, personal fees from Amazentis, grants and personal fees from Nestle', grants and personal fees from Astellas, personal fees from Glaxo Smithkline, outside the submitted work. There are no other competing interests from co-authors. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Flow of participants through the…
Fig 1. Flow of participants through the trial.
Fig 2
Fig 2
Change in 400 m walk gait speed (m/s) compared to baseline gait speed at 6, 12, and 24 months according to quartiles of change physical activity by accelerometry from baseline to 24 months, (a.) physical activity arm alone and (b.) entire group combined (least square means ± SE). Overall effect P < 0.0001. Effects within each time point P < 0.0001.
Fig 3
Fig 3
Change in SPPB score compared to baseline SPPB score at 6, 12, and 24 months according to quartiles of change in physical activity by accelerometry from baseline to 24 months, (a.) physical activity arm alone and (b.) entire group combined (least square means ± SE). Overall effect P < 0.0001. Effects within each time point all P < 0.01(physical activity arm); Effects within each time point all P < 0.06 (month 6, P = 0.06, months 12 and 24, P < 0.0001) (entire group).

References

    1. Buchner DM, Beresford SA, Larson EB, LaCroix AZ, Wagner EH. Effects of physical activity on health status in older adults. II. Intervention studies. Annu Rev Public Health. 1992;13:469–88. doi: .
    1. Stuck AE, Walthert JM, Nikolaus T, Bula CJ, Hohmann C, Beck JC. Risk factors for functional status decline in community-living elderly people: a systematic literature review. Soc Sci Med. 1999. February;48(4):445–69. .
    1. Gardner MM, Robertson MC, Campbell AJ. Exercise in preventing falls and fall related injuries in older people: a review of randomised controlled trials. Br J Sports Med. 2000. February;34(1):7–17. doi: .
    1. Gillespie LD, Gillespie WJ, Robertson MC, Lamb SE, Cumming RG, Rowe BH. Interventions for preventing falls in elderly people. Cochrane Database Syst Rev. 2001. (3):CD000340 doi: .
    1. Gillespie LD, Gillespie WJ, Robertson MC, Lamb SE, Cumming RG, Rowe BH. Interventions for preventing falls in elderly people. Cochrane Database Syst Rev. 2003. (4):CD000340 doi: .
    1. Tinetti ME, Baker DI, McAvay G, Claus EB, Garrett P, Gottschalk M, et al. A multifatorial intervention to reduce risk of falling among elderly people living in the community. N Engl J Med. 1994;331:821–7. doi:
    1. Feskanich D, Willett W, Colditz G. Walking and leisure-time activity and risk of hip fracture in postmenopausal women. Jama. 2002. November 13;288(18):2300–6. .
    1. Uusi-Rasi K, Kannus P, Cheng S, Sievanen H, Pasanen M, Heinonen A, et al. Effect of alendronate and exercise on bone and physical performance of postmenopausal women: a randomized controlled trial. Bone. 2003. July;33(1):132–43. .
    1. Rodriguez BL, Curb JD, Burchfiel CM, Abbott RD, Petrovitch H, Masaki K, et al. Physical activity and 23-year incidence of coronary heart disease morbidity and mortality among middle-aged men. The Honolulu Heart Program. Circulation. 1994. June;89(6):2540–4. .
    1. Hu FB, Sigal RJ, Rich-Edwards JW, Colditz GA, Solomon CG, Willett WC, et al. Walking compared with vigorous physical activity and risk of type 2 diabetes in women: a prospective study. Jama. 1999. October 20;282(15):1433–9. .
    1. Manson JE, Nathan DM, Krolewski AS, Stampfer MJ, Willett WC, Hennekens CH. A prospective study of exercise and incidence of diabetes among US male physicians. Jama. 1992. July 1;268(1):63–7. .
    1. Manson JE, Rimm EB, Stampfer MJ, Colditz GA, Willett WC, Krolewski AS, et al. Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet. 1991. September 28;338(8770):774–8. .
    1. LaCroix AZ, Guralnik JM, Berkman LF, Wallace RB, Satterfield S. Maintaining mobility in late life. II. Smoking, alcohol consumption, physical activity, and body mass index. Am J Epidemiol. 1993. April 15;137(8):858–69. .
    1. Leveille SG, Guralnik JM, Ferrucci L, Langlois JA. Aging successfully until death in old age: opportunities for increasing active life expectancy. Am J Epidemiol. 1999. April 1;149(7):654–64. .
    1. Messier SP, Royer TD, Craven TE, O'Toole ML, Burns R, Ettinger WH Jr. Long-term exercise and its effect on balance in older, osteoarthritic adults: results from the Fitness, Arthritis, and Seniors Trial (FAST). J Am Geriatr Soc. 2000. February;48(2):131–8. .
    1. Nelson ME, Layne JE, Bernstein MJ, Nuernberger A, Castaneda C, Kaliton D, et al. The effects of multidimensional home-based exercise on functional performance in elderly people. J Gerontol A Biol Sci Med Sci. 2004. February;59(2):154–60. .
    1. Pahor M, Blair SN, Espeland M, Fielding R, Gill TM, Guralnik JM, et al. Effects of a physical activity intervention on measures of physical performance: Results of the lifestyle interventions and independence for Elders Pilot (LIFE-P) study. J Gerontol A Biol Sci Med Sci. 2006. November;61(11):1157–65. .
    1. Rejeski WJ, Brubaker PH, Goff DC Jr., Bearon LB, McClelland JW, Perri MG, et al. Translating weight loss and physical activity programs into the community to preserve mobility in older, obese adults in poor cardiovascular health. Arch Intern Med. 2011. May 23;171(10):880–6. doi: .
    1. McDermott MM, Liu K, Guralnik JM, Criqui MH, Spring B, Tian L, et al. Home-based walking exercise intervention in peripheral artery disease: a randomized clinical trial. JAMA. 2013. July 3;310(1):57–65. doi: .
    1. Martin KA, Sinden AR. Who will stay and who will go? A review of older adults' adherence to randomized controlled trials of exercise. J Aging and Phys Activ. 2001;9:91–114.
    1. Fielding RA, Katula J, Miller ME, Abbott-Pillola K, Jordan A, Glynn NW, et al. Activity adherence and physical function in older adults with functional limitations. Med Sci Sports Exerc. 2007. November;39(11):1997–2004. doi: .
    1. Fielding RA, Rejeski WJ, Blair S, Church T, Espeland MA, Gill TM, et al. The Lifestyle Interventions and Independence for Elders Study: design and methods. J Gerontol A Biol Sci Med Sci. 2011. November;66(11):1226–37. doi: . Pubmed Central PMCID: 3193523. Epub 2011/08/10. eng.
    1. Pahor M, Guralnik JM, Ambrosius WT, Blair S, Bonds DE, Church TS, et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA. 2014 June 18;311(23):2387–96. doi: .
    1. Marsh AP, Lovato LC, Glynn NW, Kennedy K, Castro C, Domanchuk K, et al. Lifestyle interventions and independence for elders study: recruitment and baseline characteristics. J Gerontol A Biol Sci Med Sci. 2013. December;68(12):1549–58. doi: . Pubmed Central PMCID: 3814232.
    1. Guralnik JM, Ferrucci K, Simonnick EM, Salive ME, Wallace RB. Lower extremity function over the age of 70 years as a predictor of subsequent disability. N Engl J Med. 1995;332:556–61. doi:
    1. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000. April;55(4):M221–31. .
    1. Teng EL, Chui HC. The Modified Mini-Mental State (3MS) examination. J Clin Psychiatry. 1987. August;48(8):314–8. .
    1. Rejeski WJ, Axtell R, Fielding R, Katula J, King AC, Manini TM, et al. Promoting physical activity for elders with compromised function: the lifestyle interventions and independence for elders (LIFE) study physical activity intervention. Clin Interv Aging. 2013;8:1119–31. doi: . Pubmed Central PMCID: 3775623.
    1. United States. Dept. of Health and Human Services. Physical Activity guidelines Advisory Committee., United States. Dept. of Health and Human Services. Physical Activity Guidelines Advisory Committee report, 2008 to the Secretary of Health and Human Services Washington, DC: U.S. Dept. of Health and Human Services; 2008. Available from:
    1. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007. August 28;116(9):1094–105. doi: .
    1. King AC, Rejeski WJ, Buchner DM. Physical activity interventions targeting older adults. A critical review and recommendations. Am J Prev Med. 1998. November;15(4):316–33. .
    1. Guralnik JM, Simonsick EM, Ferucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality in nursing home admission. J Gerontol. 1994;49:M85–M94.
    1. Bann D, Hire D, Manini T, Cooper R, Botoseneanu A, McDermott MM, et al. Light Intensity physical activity and sedentary behavior in relation to body mass index and grip strength in older adults: cross-sectional findings from the Lifestyle Interventions and Independence for Elders (LIFE) study. PloS one. 2015;10(2):e0116058 doi: . Pubmed Central PMCID: 4315494.
    1. Copeland JL, Esliger DW. Accelerometer assessment of physical activity in active, healthy older adults. J Aging Phys Act. 2009. January;17(1):17–30. .
    1. Matthews CE. Calibration of accelerometer output for adults. Medicine and Science in Sports and Exercise. 2005. November;37(11):S512–S22. English.
    1. Rejeski WJ, Marsh AP, Brubaker PH, Buman M, Fielding RA, Hire D, et al. Analysis and Interpretation of Accelerometry Data in Older Adults: The LIFE Study. J Gerontol A Biol Sci Med Sci. 2015. October 29 doi: .
    1. Stewart AL, Mills KM, King AC, Haskell WL, Gillis D, Ritter PL. CHAMPS physical activity questionnaire for older adults: outcomes for interventions. Med Sci Sports Exerc. 2001. July;33(7):1126–41. .
    1. Ringsberg KA, Gardsell P, Johnell O, Josefsson PO, Obrant KJ. The impact of long-term moderate physical activity on functional performance, bone mineral density and fracture incidence in elderly women. Gerontology. 2001. Jan-Feb;47(1):15–20. doi: .
    1. Brach JS, Simonsick EM, Kritchevsky S, Yaffe K, Newman AB, Health A, et al. The association between physical function and lifestyle activity and exercise in the health, aging and body composition study. J Am Geriatr Soc. 2004. April;52(4):502–9. doi: .
    1. Martin HJ, Syddall HE, Dennison EM, Cooper C, Sayer AA. Relationship between customary physical activity, muscle strength and physical performance in older men and women: findings from the Hertfordshire Cohort Study. Age Ageing. 2008. September;37(5):589–93. doi: .
    1. Chale-Rush A, Guralnik JM, Walkup MP, Miller ME, Rejeski WJ, Katula JA, et al. Relationship between physical functioning and physical activity in the lifestyle interventions and independence for elders pilot. J Am Geriatr Soc. 2010. October;58(10):1918–24. doi: . Pubmed Central PMCID: 2952066. Epub 2010/08/27. eng.
    1. McDermott MM, Greenland P, Ferrucci L, Criqui MH, Liu K, Sharma L, et al. Lower extremity performance is associated with daily life physical activity in individuals with and without peripheral arterial disease. J Am Geriatr Soc. 2002. February;50(2):247–55. .
    1. Morie M, Reid KF, Miciek R, Lajevardi N, Choong K, Krasnoff JB, et al. Habitual physical activity levels are associated with performance in measures of physical function and mobility in older men. J Am Geriatr Soc. 2010. September;58(9):1727–33. doi: .
    1. Corcoran MP, Chui KK, White DK, Reid KF, Kirn D, Nelson ME, et al. Accelerometer Assessment of Physical Activity and Its Association with Physical Function in Older Adults Residing at Assisted Care Facilities. J Nutr Health Aging. 2016;20(7):752–8. doi: .
    1. McDermott MM, Liu K, Ferrucci L, Criqui MH, Greenland P, Guralnik JM, et al. Physical performance in peripheral arterial disease: a slower rate of decline in patients who walk more. Ann Intern Med. 2006. January 3;144(1):10–20. .
    1. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait speed and survival in older adults. Jama. 2011. January 5;305(1):50–8. doi: .
    1. Kwon S, Perera S, Pahor M, Katula JA, King AC, Groessl EJ, et al. What is a meaningful change in physical performance? Findings from a clinical trial in older adults (the LIFE-P study). J Nutr Health Aging. 2009. June;13(6):538–44. .
    1. Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc. 2006. May;54(5):743–9. doi: .

Source: PubMed

3
Subskrybuj