Citrate Pharmacokinetics in Critically Ill Patients with Acute Kidney Injury

Yin Zheng, Zhongye Xu, Qiuyu Zhu, Junfeng Liu, Jing Qian, Huaizhou You, Yong Gu, Chuanming Hao, Zheng Jiao, Feng Ding, Yin Zheng, Zhongye Xu, Qiuyu Zhu, Junfeng Liu, Jing Qian, Huaizhou You, Yong Gu, Chuanming Hao, Zheng Jiao, Feng Ding

Abstract

Introduction: Regional citrate anticoagulation (RCA) is gaining popularity in continous renal replacement therapy (CRRT) for critically ill patients. The risk of citrate toxicity is a primary concern during the prolonged process. The aim of this study was to assess the pharmacokinetics of citrate in critically ill patients with AKI, and used the kinetic parameters to predict the risk of citrate accumulation in this population group undergoing continuous veno-venous hemofiltration (CVVH) with RCA.

Methods: Critically ill patients with AKI (n = 12) and healthy volunteers (n = 12) were investigated during infusing comparative dosage of citrate. Serial blood samples were taken before, during 120 min and up to 120 min after infusion. Citrate pharmacokinetics were calculated and compared between groups. Then the estimated kinetic parameters were applied to the citrate kinetic equation for validation in other ten patients' CVVH sessions with citrate anticoagulation.

Results: Total body clearance of citrate was similar in critically ill patients with AKI and healthy volunteers (648.04±347.00 L/min versus 686.64±353.60 L/min; P = 0.624). Basal and peak citrate concentrations were similar in both groups (p = 0.423 and 0.247, respectively). The predicted citrate curve showed excellent fit to the measurements.

Conclusions: Citrate clearance is not impaired in critically ill patients with AKI in the absence of severe liver dysfunction. Citrate pharmacokinetic data can provide a basis for the clinical use of predicting the risk of citrate accumulation.

Trial registration: ClinicalTrials.gov Identifier NCT00948558.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Plasma citrate concentrations (mean ±…
Figure 1. Plasma citrate concentrations (mean ± SD) during 120 min citrate infusion and 120 min after the end of citrate infusion in critically ill patients with AKI (n = 12) and in healthy volunteers (n = 12).
Figure 2. Measured citrate and ionized calcium…
Figure 2. Measured citrate and ionized calcium curves during the first 8 hours of CVVH using citrate anticoagulation while the blood rate were set at 150–200 ml/min and the substitution fluid were at the rate of 4 L/h (n = 10 treatments).
Figure 3. The mean measured and predicted…
Figure 3. The mean measured and predicted systemic citrate concentrations with 95% confidence intervals at 1 h, 3 h, 6 h and 8 h (vertical lines).
Figure 4. Comparison of predicted and measured…
Figure 4. Comparison of predicted and measured systemic citrate concentrations at the 3rd hour (upper) and 8th hour (lower) of CVVH with RCA.
The dotted lines represented the 95% confidence intervals of the differences of predicted and measured systemic citrate concentrations.

References

    1. Kutsogiannis DJ, Gibney RT, Stollery D, Gao J (2005) Regional citrate versus systemic heparin anticoagulation for continuous renal replacement in critically ill patients. Kidney Int 67: 2361–2367.
    1. Wu MY, Hsu YH, Bai CH, Lin YF, Wu CH, et al. (2012) Regional citrate versus heparin anticoagulation for continuous renal replacement therapy: a meta-anlysis of randomized controlled trails. Am J Kidney Dis 59 (6): 810–818.
    1. Durao MS, Monte JC, Batista MC, Oliveira M, Iizuka IJ, et al. (2008) The use of regional citrate anticoagulation for continous venovenous hemodiafiltration in acute kidney injury. Crit Care Med 36: 3024–3029.
    1. Hofbauer R, Moser D, Frass M, Oberbauer R, Kaye AD, et al. (1999) Effect of anticoagulation on blood membrane interactions during hemodialysis. Kidney Int 56: 1578–1583.
    1. Bagshaw SM, Laupland KB, Boiteau PJ, Godinez-Luna T (2005) Is regional citrate superior to systemic heparin anticoagulation for continuous renal replacement therapy? A prospective observational study in an adult regional critical care system. J Crit Care 20: 155–161.
    1. Monchi M, Berghmans D, Ledoux D, Canivet JL, Dubois B, et al. (2004) Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive Care Med 30: 260–265.
    1. Dhondt A, Vanholder R, Tielemans C, Glorieux G, Waterloos MA, et al. (2000) Effect of regional citrate anti-coagulation on leucopenia, complement activation, and expression of leukocyte surface molecules during hemodialysis with unmodified cellulose membranes. Nephron 85: 334–342.
    1. Oudemans-van Straaten HM, Bosman RJ, Koopmans M, van der Voort PH, Wester JI, et al. (2009) Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med 37: 545–552.
    1. Wexler IB, Pincus JB, Natelson S (2009) The fate of citrate in erythroblastic infants treated with exchange transfusion. J Clin Invest 28: 474–481.
    1. Kramer L, Bauer E, Joukhadar C, Strobl W, Gendo A, et al. (2003) Citrate pharmacokinetics and metabolism in cirrhotic and noncirrhotic critically ill patients. Crit Care Med 31: 2450–2455.
    1. Bauer E, Derfler K, Joukhadar C, Druml W (2005) Citrate kinetics in patients receiving long-term hemodialysis therapy. Am J Kidney Dis 46: 903–907.
    1. Morgera S, Schneider M, Slowinski T, Vargas-Hein O, Zuckermann-Becker H, et al. (2009) A safe citrate anticoagulation protocol with variable treatment efficacy and excellent control of the acid-base status. Crit Care Med 37: 2018–2024.
    1. Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T (2001) Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med 29: 748–752.
    1. Mariano F, Morselli M, Bergamo D, Hollo Z, Scella S, et al. (2011) Blood and ultrafiltrate dosage of citrate as a useful and routine tool during continuous venovenous haemodiafiltration in septic shock patients. Nephrol Dial Transplant 26(12): 3882–3888.
    1. Whitfield LR, Levy G (1981) Permeability of human and rat red blood cells to citrate. Thromb Res 21: 681–684.
    1. Yee J, Frinak S, Szamosfalvi B (2007) Comprehensive citrate kinetic analysis: An indispensable tool for the design of safe regional citrate anticoagulation protocols [Abstract] J Am Soc Nephrol. 18: 455A.
    1. Bohler J, Donauer J, Keller F (1999) Pharmacokinetic principles during continuous renal replacement therapy: drugs and dosage. Kidney Int Suppl 72: S24–S28.
    1. Chow Shein-Chung, Hansheng Wang, Jun Shao (2003) Sample Size Calculations in Clinical Research. 56 p.
    1. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, et al. (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22 707–710.
    1. Apsner R, Schwarzenhofer M, Derfler K, Zauner C, Ratheiser K, et al. (1997) Impairment of citrate metabolism in acute hepatic failure. Wien Klin Wochenschr 109: 123–127.
    1. Kozik-Jaromin J, Nier V, Heemann U, Kreymann B, Böhler J (2009) Citrate pharmacokinetics and calcium levels during high-flux dialysis with regional citrate anticoagulation. Nephrol Dial Transplant 24(7): 2244–2251.

Source: PubMed

3
Subskrybuj