After Nf1 loss in Schwann cells, inflammation drives neurofibroma formation

Jonathan S Fletcher, Jay Pundavela, Nancy Ratner, Jonathan S Fletcher, Jay Pundavela, Nancy Ratner

Abstract

Plexiform neurofibromas (PNF) are peripheral nerve tumors caused by bi-allelic loss of NF1 in the Schwann cell (SC) lineage. PNF are common in individuals with Neurofibromatosis type I (NF1) and can cause significant patient morbidity, spurring research into potential therapies. Immune cells are rare in peripheral nerve, whereas in PNF 30% of the cells are monocytes/macrophages. Mast cells, T cells, and dendritic cells (DCs) are also present. NF1 mutant neurofibroma SCs with elevated Ras-GTP signaling resemble injury-induced repair SCs, in producing growth factors and cytokines not normally present in SCs. This provides a cytokine-rich environment facilitating PNF immune cell recruitment and fibrosis. We propose a model based on genetic and pharmacologic evidence in which, after loss of Nf1 in the SC lineage, a lag occurs. Then, mast cells and macrophages are recruited to nerve. Later, T cell/DC recruitment through CXCL10/CXCR3 drives neurofibroma initiation and sustains PNF macrophages and tumor growth. Stat3 signaling is an additional critical mediator of neurofibroma initiation, cytokine production, and PNF growth. At each stage of PNF development therapeutic benefit should be achievable through pharmacologic modulation of leukocyte recruitment and function.

Keywords: CXCR3; Interferon; Neurofibromatosis type 1; STAT3; T-cells; dendritic cells.

© The Author(s) 2019. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.

Figures

Figure 1.
Figure 1.
Inflammation driven neurofibroma formation. After Nf1 loss in Schwann cells (SCs), a delay in phenotype occurs (Stage1). Subsequently, SCs show elevated growth factors/cytokine production (eg. CSF-1 and SCF), begin to show slight disruption of Remak bundles, and infiltration of mast cells. Macrophages are abundant by 2 months of age, and further cytokines are produced (eg CXCL10/IP-10), concurrent with occasional presence of CXCR3 positive dendritic cells (DCs) and T cells (Stage 2). By 4 months, small tumors form. These contain increased numbers of DCs, T cells. Macrophages remain abundant. Fibrosis is robust, and Remak bundle disruption dramatic. By 7 months, tumors enlarge; all features characterized at 4 months persist (Stage 3).
Figure 2.
Figure 2.
Potential immunotherapy targets in neurofibroma. In neurofibroma mouse models, the CXCL10/CXCR3 axis involving dendritic cells and T cells is critical in the early development of neurofibroma (~2 months). Macrophages contribute to neurofibroma formation via the involvement of STAT3 and CSF-1/CSF1R signaling. Inhibitory molecules targeting STAT3, CSF-1/CSF1R, and pegylated Interferon alpha 2b in established neurofibroma modestly inhibit tumor growth. MEK inhibition significantly shrinks most neurofibromas.

References

    1. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–545.
    1. Virchow R. Die Krankhaften Geschwülste, Dreissig Vorlesungen Gehalten Während Des Wintersemesters 1862–1863 an Der Universität zu Berlin. Berlin: A. Hirschwald; 1863.
    1. Dvorak HF. Tumors: wounds that do not heal-redux. Cancer Immunol Res. 2015;3(1):1–11.
    1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
    1. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–899.
    1. Kato S, Lippman SM, Flaherty KT, Kurzrock R. The conundrum of genetic “drivers” in benign conditions. J Natl Cancer Inst. 2016;108(8).
    1. Pollock PM, Harper UL, Hansen KS, et al. . High frequency of BRAF mutations in nevi. Nat Genet. 2003;33(1):19–20.
    1. Yeh I, von Deimling A, Bastian BC. Clonal BRAF mutations in melanocytic nevi and initiating role of BRAF in melanocytic neoplasia. J Natl Cancer Inst. 2013;105(12):917–919.
    1. Chan TL, Zhao W, Leung SY, et al. . BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res. 2003;63(16):4878–4881.
    1. Esteller M, Sparks A, Toyota M, et al. . Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 2000;60(16):4366–4371.
    1. De Raedt T, Brems H, Wolkenstein P, et al. . Elevated risk for MPNST in NF1 microdeletion patients. Am J Hum Genet. 2003;72(5):1288–1292.
    1. Thorsson V, Gibbs DL, Brown SD, et al. . The Immune Landscape of Cancer. Immunity. 2018;48(4):812–830.e14.
    1. Patwardhan PP, Surriga O, Beckman MJ, et al. . Sustained inhibition of receptor tyrosine kinases and macrophage depletion by PLX3397 and rapamycin as a potential new approach for the treatment of MPNSTs. Clin Cancer Res. 2014;20(12):3146–3158.
    1. Prada CE, Jousma E, Rizvi TA, et al. . Neurofibroma-associated macrophages play roles in tumor growth and response to pharmacological inhibition. Acta Neuropathol. 2013;125(1):159–168.
    1. Crowe FW. A Clinical, Pathological, and Genetic Study of Multiple Neurofibromatosis. Springfield, IL: Thomas; 1956.
    1. Mulvihill JJ, Sorensen SA, Nielsen A. 4 Decades of neurofibromatosis (nf) (recklinghausen disease) in denmark – incidence of cancers. Am J Hum Genet. 1983;35(6):A68–A68.
    1. Dagalakis U, Lodish M, Dombi E, et al. . Puberty and plexiform neurofibroma tumor growth in patients with neurofibromatosis type I. J Pediatr. 2014;164(3):620–624.
    1. Nguyen R, Dombi E, Widemann BC, et al. . Growth dynamics of plexiform neurofibromas: a retrospective cohort study of 201 patients with neurofibromatosis 1. Orphanet J Rare Dis. 2012;7:75.
    1. Prada CE, Rangwala FA, Martin LJ, et al. . Pediatric plexiform neurofibromas: impact on morbidity and mortality in neurofibromatosis type 1. J Pediatr. 2012;160(3):461–467.
    1. Merker VL, Bredella MA, Cai W, et al. . Relationship between whole-body tumor burden, clinical phenotype, and quality of life in patients with neurofibromatosis. Am J Med Genet A. 2014;164A(6):1431–1437.
    1. Plotkin SR, Davis SD, Robertson KA, et al. . Sleep and pulmonary outcomes for clinical trials of airway plexiform neurofibromas in NF1. Neurology. 2016;87(7 Suppl 1):S13–S20.
    1. Kongkriangkai AM, King C, Martin LJ, et al. . Substantial pain burden in frequency, intensity, interference and chronicity among children and adults with neurofibromatosis Type 1. Am J Med Genet A. 2019;179(4):602–607.
    1. Chen Z, Mo J, Brosseau JP, et al. . Spatiotemporal loss of NF1 in schwann cell lineage leads to different types of cutaneous Neurofibroma susceptible to modification by the hippo pathway. Cancer Discov. 2019;9(1):114–129.
    1. Radomska KJ, Coulpier F, Gresset A, et al. . Cellular origin, tumor progression, and pathogenic mechanisms of cutaneous neurofibromas revealed by mice with Nf1 knockout in boundary cap cells. Cancer Discov. 2019;9(1):130–147.
    1. Rice FL, Houk G, Wymer JP, et al. . The evolution and multi-molecular properties of NF1 cutaneous neurofibromas originating from C-fiber sensory endings and terminal Schwann cells at normal sites of sensory terminations in the skin. PLOS ONE. 2019;14(5):e0216527.
    1. Ortonne N, Wolkenstein P, Blakeley JO, et al. . Cutaneous neurofibromas: current clinical and pathologic issues. Neurology. 2018;91(2 Suppl 1):S5–S13.
    1. Duong TA, Bastuji-Garin S, Valeyrie-Allanore L, et al. . Evolving pattern with age of cutaneous signs in neurofibromatosis type 1: a cross-sectional study of 728 patients. Dermatology. 2011;222(3):269–273.
    1. Dugoff L, Sujansky E. Neurofibromatosis type 1 and pregnancy. Am J Med Genet. 1996;66(1):7–10.
    1. Evans DG, O’Hara C, Wilding A, et al. . Mortality in neurofibromatosis 1: in North West England: an assessment of actuarial survival in a region of the UK since 1989. Eur J Hum Genet. 2011;19(11):1187–1191.
    1. Masocco M, Kodra Y, Vichi M, et al. . Mortality associated with neurofibromatosis type 1: a study based on Italian death certificates (1995–2006). Orphanet J Rare Dis. 2011;6:11.
    1. Duong TA, Sbidian E, Valeyrie-Allanore L, et al. . Mortality associated with neurofibromatosis 1: a cohort study of 1895 patients in 1980-2006 in France. Orphanet J Rare Dis. 2011;6:18.
    1. Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer. 2015;15(5):290–301.
    1. Kim HA, Rosenbaum T, Marchionni MA, et al. . Schwann cells from neurofibromin deficient mice exhibit activation of p21ras, inhibition of cell proliferation and morphological changes. Oncogene. 1995;11(2):325–335.
    1. Sherman LS, Atit R, Rosenbaum T, et al. . Single cell Ras-GTP analysis reveals altered Ras activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. J Biol Chem. 2000;275(39):30740–30745.
    1. Huang Y, Rangwala F, Fulkerson PC, et al. . Role of TC21/R-Ras2 in enhanced migration of neurofibromin-deficient Schwann cells. Oncogene. 2004;23(2):368–378.
    1. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170(1):17–33.
    1. Jessen WJ, Miller SJ, Jousma E, et al. . MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest. 2013;123(1):340–347.
    1. Dombi E, Baldwin A, Marcus LJ, et al. . Activity of Selumetinib in Neurofibromatosis type 1-related plexiform Neurofibromas. N Engl J Med. 2016;375(26):2550–2560.
    1. Jousma E, Rizvi TA, Wu J, et al. . Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of Neurofibromatosis type 1. Pediatr Blood Cancer. 2015;62(10):1709–1716.
    1. Patmore DM, Welch S, Fulkerson PC, et al. . In vivo regulation of TGF-β by R-Ras2 revealed through loss of the RasGAP protein NF1. Cancer Res. 2012;72(20):5317–5327.
    1. Wu J, Liu W, Williams JP, Ratner N. EGFR-Stat3 signalling in nerve glial cells modifies neurofibroma initiation. Oncogene. 2017;36(12):1669–1677 .
    1. Müller M, Leonhard C, Krauthausen M, et al. . On the longevity of resident endoneurial macrophages in the peripheral nervous system: a study of physiological macrophage turnover in bone marrow chimeric mice. J Peripher Nerv Syst. 2010;15(4):357–365.
    1. Johnson D, Yasui D, Seeldrayers P. An analysis of mast cell frequency in the rodent nervous system: numbers vary between different strains and can be reconstituted in mast cell-deficient mice. J Neuropathol Exp Neurol. 1991;50(3):227–234.
    1. Kobsar I, Hasenpusch-Theil K, Wessig C, et al. . Evidence for macrophage-mediated myelin disruption in an animal model for Charcot–Marie–Tooth neuropathy type 1A. J Neurosci Res. 2005;81(6):857–864.
    1. Kohl B, Fischer S, Groh J, et al. . MCP-1/CCL2 modifies axon properties in a PMP22-overexpressing mouse model for Charcot–Marie–tooth 1A neuropathy. Am J Pathol. 2010;176(3):1390–1399.
    1. Yang M, Peyret C, Shi XQ, et al. . Evidence from human and animal studies: pathological roles of CD8(+) T cells in autoimmune peripheral neuropathies. Front Immunol. 2015;6:532.
    1. Cattin AL, Burden JJ, Van Emmenis L, et al. . Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell. 2015;162(5):1127–1139.
    1. Tomlinson JE, ˇygelytė E, Grenier JK, et al. . Temporal changes in macrophage phenotype after peripheral nerve injury. J Neuroinflammation. 2018;15(1):185.
    1. Stratton JA, Holmes A, Rosin NL, et al. . Macrophages regulate schwann cell maturation after nerve injury. Cell Rep. 2018;24(10):2561–2572.e6.
    1. Viskochil DH. It takes two to tango: mast cell and Schwann cell interactions in neurofibromas. J Clin Invest. 2003;112(12):1791–1793.
    1. Yang FC, Ingram DA, Chen S, et al. . Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/ − mast cells. J Clin Invest. 2003;112(12):1851–1861.
    1. Riccardi VM. A controlled multiphase trial of ketotifen to minimize neurofibroma-associated pain and itching. Arch Dermatol. 1993;129(5):577–581.
    1. Staser K, Yang FC, Clapp DW. Mast cells and the neurofibroma microenvironment. Blood. 2010;116(2):157–164.
    1. Yang FC, Ingram DA, Chen S, et al. . Nf1-dependent tumors require a microenvironment containing Nf1+/– and c-kit-dependent bone marrow. Cell. 2008;135(3):437–448.
    1. Monk KR, Wu J, Williams JP, et al. . Mast cells can contribute to axon-glial dissociation and fibrosis in peripheral nerve. Neuron Glia Biol. 2007;3(3):233–244.
    1. Liao CP, Booker RC, Brosseau JP, et al. . Contributions of inflammation and tumor microenvironment to neurofibroma tumorigenesis. J Clin Invest. 2018;128(7):2848–2861.
    1. Yang FC, Chen S, Clegg T, et al. . Nf1+/ − mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet. 2006;15(16):2421–2437.
    1. Tang LY, Heller M, Meng Z, et al. . Transforming growth factor-β (TGF-β) directly activates the JAK1-STAT3 axis to induce hepatic fibrosis in coordination with the SMAD pathway. J Biol Chem. 2017;292(10): 4302–4312.
    1. Hamidi A, Song J, Thakur N, et al. . TGF-beta promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85alpha. Sci Signal. 2017;10(486). doi:10.1126/scisignal.aal4186
    1. Robertson KA, Nalepa G, Yang FC, et al. . Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 2012;13(12):1218–1224.
    1. Yang F-C, Ingram D, Chen S, et al. . Imatinib Mesylate reduces plexiform Neurofibromas by targeting the hematopoietic microenvironment. Blood. 2007;110(11):1915 LP– 1915.
    1. Farschtschi S, Park SJ, Sawitzki B, et al. . Effector T cell subclasses associate with tumor burden in neurofibromatosis type 1 patients. Cancer Immunol Immunother. 2016;65(9):1113–1121.
    1. Fletcher JS, Wu J, Jessen WJ, et al. . Cxcr3-expressing leukocytes are necessary for neurofibroma formation in mice. JCI Insight. 2019;4(3). doi: 10.1172/jci.insight.98601
    1. Haworth KB, Arnold MA, Pierson CR, et al. . Immune profiling of NF1-associated tumors reveals histologic subtype distinctions and heterogeneity: implications for immunotherapy. Oncotarget. 2017;8(47):82037–82048.
    1. Winkler AE, Brotman JJ, Pittman ME, et al. . CXCR3 enhances a T-cell-dependent epidermal proliferative response and promotes skin tumorigenesis. Cancer Res. 2011;71(17):5707–5716.
    1. Cortez-Retamozo V, Etzrodt M, Newton A, et al. . Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA. 2012;109(7):2491–2496.
    1. Li X, Yao W, Yuan Y, et al. . Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 2017;66(1):157–167.
    1. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61.
    1. Müller S, Kohanbash G, Liu SJ, et al. . Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol. 2017;18(1):234.
    1. Choi K, Komurov K, Fletcher JS, et al. . An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system. Sci Rep. 2017;7:43315.
    1. Ribeiro S, Napoli I, White IJ, et al. . Injury signals cooperate with Nf1 loss to relieve the tumor-suppressive environment of adult peripheral nerve. Cell Rep. 2013;5(1):126–136.
    1. Zheng H, Chang L, Patel N, et al. . Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cell. 2008;13(2):117–128.
    1. Zhu Y, Ghosh P, Charnay P, et al. . Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science. 2002;296(5569):920–922.
    1. Brosseau JP, Liao CP, Wang Y, et al. . NF1 heterozygosity fosters de novo tumorigenesis but impairs malignant transformation. Nat Commun. 2018;9(1):5014.
    1. Wu J, Williams JP, Rizvi TA, et al. . Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell. 2008;13(2):105–116.
    1. Müller M, Wacker K, Getts D, et al. . Further evidence for a crucial role of resident endoneurial macrophages in peripheral nerve disorders: lessons from acrylamide-induced neuropathy. Glia. 2008;56(9):1005–1016.
    1. Moalem G, Monsonego A, Shani Y, et al. . Differential T cell response in central and peripheral nerve injury: connection with immune privilege. FASEB J. 1999;13(10):1207–1217.
    1. Rizvi TA, Huang Y, Sidani A, et al. . A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. J Neurosci. 2002;22(22):9831–9840.
    1. Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016;594(13):3521–3531.
    1. Clements MP, Byrne E, Camarillo Guerrero LF, et al. . The wound microenvironment reprograms schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration. Neuron. 2017;96(1):98–114.e7.
    1. Mueller M, Leonhard C, Wacker K, et al. . Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Lab Invest. 2003;83(2):175–185.
    1. Fledrich R, Stassart RM, Klink A, et al. . Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A. Nat Med. 2014;20(9):1055–1061.
    1. Sheu JY, Kulhanek DJ, Eckenstein FP. Differential patterns of ERK and STAT3 phosphorylation after sciatic nerve transection in the rat. Exp Neurol. 2000;166(2):392–402.
    1. Harrisingh MC, Perez-Nadales E, Parkinson DB, et al. . The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J. 2004;23(15):3061–3071.
    1. Cervellini I, Galino J, Zhu N, et al. . Sustained MAPK/ERK activation in adult Schwann cells impairs nerve repair. J Neurosci. 2017;38(3):679–690.
    1. Sheean ME, McShane E, Cheret C, et al. . Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination. Genes Dev. 2014;28(3):290–303.
    1. Kim S, Maynard JC, Strickland A, et al. . Schwann cell O-GlcNAcylation promotes peripheral nerve remyelination via attenuation of the AP-1 transcription factor JUN. Proc Natl Acad Sci USA. 2018;115(31):8019–8024.
    1. Arthur-Farraj PJ, Morgan CC, Adamowicz M, et al. . Changes in the coding and non-coding transcriptome and DNA Methylome that define the schwann cell repair phenotype after nerve injury. Cell Rep. 2017;20(11):2719–2734.
    1. Newbern JM, Li X, Shoemaker SE, et al. . Specific functions for ERK/MAPK signaling during PNS development. Neuron. 2011;69(1):91–105.
    1. Gomez-Sanchez JA, Lopez de Armentia M, Lujan R, et al. . Sustained axon-glial signaling induces Schwann cell hyperproliferation, Remak bundle myelination, and tumorigenesis. J Neurosci. 2009;29(36):11304–11315.
    1. Williams JP, Wu J, Johansson G, et al. . Nf1 mutation expands an EGFR-dependent peripheral nerve progenitor that confers neurofibroma tumorigenic potential. Cell Stem Cell. 2008;3(6):658–669.
    1. Jakacki RI, Dombi E, Steinberg SM, et al. . Phase II trial of pegylated interferon alfa-2b in young patients with neurofibromatosis type 1 and unresectable plexiform neurofibromas. Neuro Oncol. 2017;19(2):289–297.
    1. Ling BC, Wu J, Miller SJ, et al. . Role for the epidermal growth factor receptor in neurofibromatosis-related peripheral nerve tumorigenesis. Cancer Cell. 2005;7(1):65–75.
    1. Bournazou E, Bromberg J. Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT. 2013;2(2):e23828.
    1. Wu J, Keng VW, Patmore DM, et al. . Insertional mutagenesis identifies a STAT3/Arid1b/β-catenin pathway driving neurofibroma initiation. Cell Rep. 2016;14(8):1979–1990.
    1. Fletcher JS, Springer MG, Choi K, et al. . STAT3 inhibition reduces macrophage number and tumor growth in neurofibroma. Oncogene. 2019;38(15):2876–2884.
    1. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798–809.
    1. Sauter KA, Pridans C, Sehgal A, et al. . Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J Leukoc Biol. 2014;96(2):265–274.
    1. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009;136(5):823–837.
    1. Michaloglou C, Vredeveld LC, Soengas MS, et al. . BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436(7051):720–724.
    1. Dhomen N, Reis-Filho JS, da Rocha Dias S, et al. . Oncogenic braf induces melanocyte senescence and melanoma in mice. Cancer Cell. 2009;15(4):294–303.
    1. Cole AM, Ridgway RA, Derkits SE, et al. . p21 loss blocks senescence following Apc loss and provokes tumourigenesis in the renal but not the intestinal epithelium. EMBO Mol Med. 2010;2(11):472–486.
    1. Courtois-Cox S, Jones SL, Cichowski K. Many roads lead to oncogene-induced senescence. Oncogene. 2008;27(20):2801–2809.
    1. Larribere L, Wu H, Novak D, et al. . NF1 loss induces senescence during human melanocyte differentiation in an iPSC-based model. Pigment Cell Melanoma Res. 2015;28(4):407–416.
    1. Coppé JP, Patil CK, Rodier F, et al. . Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLOS Biol. 2008;6(12):2853–2868.
    1. Li T, Chen ZJ. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med. 2018;215(5):1287–1299.
    1. Bartkova J, Horejsí Z, Koed K, et al. . DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434(7035):864–870.
    1. Hills SA, Diffley JF. DNA replication and oncogene-induced replicative stress. Curr Biol. 2014;24(10):R435–R444.
    1. Pemov A, Hansen NF, Sindiri S, et al. . Low mutation burden and frequent loss of CDKN2A/B and SMARCA2, but not PRC2, define pre-malignant neurofibromatosis type 1-associated atypical neurofibromas. Neuro Oncol. 2019.
    1. Gomez-Sanchez JA, Gomis-Coloma C, Morenilla-Palao C, et al. . Epigenetic induction of the Ink4a/Arf locus prevents Schwann cell overproliferation during nerve regeneration and after tumorigenic challenge. Brain. 2013;136(Pt 7):2262–2278.
    1. Chen HM, Tanaka N, Mitani Y, et al. . Critical role for constitutive type I interferon signaling in the prevention of cellular transformation. Cancer Sci. 2009;100(3):449–456.
    1. Battcock SM, Collier TW, Zu D, et al. . Negative regulation of the alpha interferon-induced antiviral response by the Ras/Raf/MEK pathway. J Virol. 2006;80(9):4422–4430.
    1. Klampfer L, Huang J, Corner G, et al. . Oncogenic Ki-ras inhibits the expression of interferon-responsive genes through inhibition of STAT1 and STAT2 expression. J Biol Chem. 2003;278(47): 46278–46287.
    1. Ahn DG, Sharif T, Chisholm K, et al. . Ras transformation results in cleavage of reticulon protein Nogo-B that is associated with impairment of IFN response. Cell Cycle. 2015;14(14):2301–2310.
    1. Silvennoinen O, Schindler C, Schlessinger J, et al. . Ras-independent growth factor signaling by transcription factor tyrosine phosphorylation. Science. 1993;261(5129):1736–1739.
    1. Inamura K, Matsuzaki Y, Uematsu N, et al. . Rapid inhibition of MAPK signaling and anti-proliferation effect via JAK/STAT signaling by interferon-alpha in hepatocellular carcinoma cell lines. Biochim Biophys Acta. 2005;1745(3):401–410.
    1. Komatsu Y, Hirasawa K, Christian SL. Global gene analysis identifying genes commonly regulated by the Ras/Raf/MEK and type I IFN pathways. Genom Data. 2015;4:84–87.
    1. Messenger ZJ, Hall JR, Jima DD, et al. . C/EBPβ deletion in oncogenic Ras skin tumors is a synthetic lethal event. Cell Death Dis. 2018;9(11):1054.

Source: PubMed

3
Subskrybuj