Carotenoids and their isomers: color pigments in fruits and vegetables

Hock-Eng Khoo, K Nagendra Prasad, Kin-Weng Kong, Yueming Jiang, Amin Ismail, Hock-Eng Khoo, K Nagendra Prasad, Kin-Weng Kong, Yueming Jiang, Amin Ismail

Abstract

Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as 'functional food ingredients'. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.

Figures

Figure 1
Figure 1
The structure of all-trans-β-carotene and its two geometric isomers [35,46].

References

    1. WHO . World Health Organization; Geneva, Switzerland: 2003. [(accessed on 3 May 2010)]. Fruit, Vegetables and NCD Disease Prevention. Available online:
    1. Cooper D.A. Carotenoids in health and disease: Recent scientific evaluations, research recommendations and the consumer. J. Nutr. 2004;134:221–224.
    1. Young C.Y.F., Yuan H.Q., He M.L., Zhang J.Y. Carotenoids and prostate cancer risk. Mini-Rev. Med. Chem. 2008;8:529–537.
    1. Shahidi F. Nutraceuticals and functional foods: Whole versus processed foods. Trends Food Sci. Technol. 2009;20:376–387. doi: 10.1016/j.tifs.2008.08.004.
    1. Bartley G.E., Scolnik P.A. Plant carotenoids: Pigments for photoprotection, visual attraction, and human health. Plant Cell. 1995;7:1027–1038.
    1. Janik E., Grudziński W., Gruszecki W.I., Krupa Z. The xanthophyll cycle pigments in Secale cereale leaves under combined Cd and high light stress conditions. J. Photochem. Photobiol. B. 2008;90:47–52. doi: 10.1016/j.jphotobiol.2007.10.006.
    1. Lancaster J.E., Lister C.E., Reay P.F., Triggs C.M. Influence of pigment composition on skin color in a wide range of fruit and vegetables. J. Am. Soc. Hortic. Sci. 1997;122:594–598.
    1. Rodriguez-Amaya D.B., Kimura M. HarvestPlus Technical Monograph, Series 2. International Food Policy Research Institute and International Center for Tropical Agriculture; Washington, DC, USA: 2004. HarvestPlus Handbook for Carotenoid Analysis.
    1. Rodriguez-Amaya D.B. A Guide to Carotenoid Analysis in Foods. International Life Sciences Institute, ILSI Press; Washington, DC, USA: 2001.
    1. Hornero-Méndez D., Mínguez-Mosquera M.I. Xanthophyll esterification accompanying carotenoid overaccumulation in chromoplast of Capsicum annuum ripening fruits is a constitutive process and useful for ripeness index. J. Agric. Food Chem. 2000;48:1617–1622. doi: 10.1021/jf9912046.
    1. Minguez-Mosquera M.I., Hornero-Mendez D. Changes in carotenoid esterification during the fruit ripening of Capsicum annuum Cv. Bola. Bola. J. Agric. Food Chem. 1994;42:640–644. doi: 10.1021/jf00039a007.
    1. Schieber A., Carle R. Occurrence of carotenoid cis-isomers in food: Technological, analytical, and nutritional implications. Trends Food Sci. Technol. 2005;16:416–422. doi: 10.1016/j.tifs.2005.03.018.
    1. Mertz C., Brat P., Caris-Veyrat C., Gunata Z. Characterization and thermal lability of carotenoids and vitamin C of tamarillo fruit (Solanum betaceum Cav.) Food Chem. 2010;119:653–659.
    1. Zepka L.Q., Mercadante A.Z. Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice. Food Chem. 2009;117:28–34. doi: 10.1016/j.foodchem.2009.03.071.
    1. Shi J., Yi C., Ye X., Xue S., Jiang Y., Ma Y., Liu D. Effects of supercritical CO2 fluid parameters on chemical composition and yield of carotenoids extracted from pumpkin. LWT – Food Sci. Technol. 2010;43:39–44.
    1. Niedzwiedzki D.M., Sandberg D.J., Cong H., Sandberg M.N., Gibson G.N., Birge R.R., Frank H.A. Ultrafast time resolved absorption spectroscopy of geometric isomers of carotenoids. Chem. Phys. 2009;357:4–16. doi: 10.1016/j.chemphys.2008.07.011.
    1. Qiu D., Chen Z.-R., Li H.-R. Effect of heating on solid β-carotene. Food Chem. 2009;112:344–349. doi: 10.1016/j.foodchem.2008.05.071.
    1. Liu R.S.H., Asato A.E. The primary process of vision and the structure of bathorhodopsin: a mechanism for photoisomerization of polyenes. Proc. Natl. Acad. Sci. USA. 1985;82:259–263. doi: 10.1073/pnas.82.2.259.
    1. Britton G. Overview of carotenoid biosynthesis. In: Britton G., Liaaen-Jensen S., Pfander H., editors. Carotenoids: Biosynthesis and Metabolism. Birkhäuser Verlag; Basel, Switzerland: 1998. pp. 13–147.
    1. Vásquez-Caicedo A.L., Sruamsiri P., Carle R., Neidhart S. Accumulation of all-trans-β-carotene and its 9-cis and 13-cis stereoisomers during postharvest ripening of nine Thai mango cultivars. J. Agric. Food Chem. 2005;53:4827–4835.
    1. Aman R., Schieber A., Carle R. Effects of heating and illumination on trans-cis isomerization and degradation of β-carotene and lutein in isolated spinach chloroplasts. J. Agric. Food Chem. 2005;53:9512–9518.
    1. Rickman J.C., Bruhn C.M., Barrett D.M. Nutritional comparison of fresh, frozen, and canned fruits and vegetables II. Vitamin A and carotenoids, vitamin E, minerals and fiber. J. Sci. Food Agric. 2007;87:1185–1196.
    1. Parker R. Absorption, metabolism, and transport of carotenoids. FASEB J. 1996;10:542–551.
    1. De Rigal D., Gauillard F., Richard-Forget F. Changes in the carotenoid content of apricot (Prunus armeniaca, var Bergeron) during enzymatic browning: β-carotene inhibition of chlorogenic acid degradation. J. Sci. Food Agric. 2000;80:763–768. doi: 10.1002/(SICI)1097-0010(20000501)80:6<763::AID-JSFA623>;2-U.
    1. Bohm V., Puspitasari-Nienaber N.L., Ferruzzi M.G., Schwartz S.J. Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J. Agric. Food Chem. 2002;50:221–226. doi: 10.1021/jf010888q.
    1. Chen B.H., Tang Y.C. Processing and stability of carotenoid powder from carrot pulp waste. J. Agric. Food Chem. 1998;46:2312–2318. doi: 10.1021/jf9800817.
    1. Goula A.M., Adamopoulos K.G., Chatzitakis P.C., Nikas V.A. Prediction of lycopene degradation during a drying process of tomato pulp. J. Food Eng. 2006;74:37–46. doi: 10.1016/j.jfoodeng.2005.02.023.
    1. Mordi R.C., Walton J.C., Burton G.W., Hughes L., Keith I.U., David L.A., Douglas M.J. Oxidative degradation of β-carotene and β-apo-8'-carotenal. Tetrahedron. 1993;49:911–928.
    1. Wacheä Y., Bosser-Deratuld A.L., Lhuguenot J.-C., Belin J.-M. Effect of cis/trans isomerism of β-carotene on the ratios of volatile compounds produced during oxidative degradation. J. Agric. Food Chem. 2003;51:1984–1987. doi: 10.1021/jf021000g.
    1. Lin C.H., Chen B.H. Determination of carotenoids in tomato juice by liquid Chromatography. J. Chromatogr. A. 2003;1012:103–109. doi: 10.1016/S0021-9673(03)01138-5.
    1. Britton G. UV/Visible Spectroscopy. In: Brotton G., Liaaen-Jensen S., Pfander H., editors. Carotenoids Spectroscopy. Birkhäuser Verlag; Basel, Switzerland: 1995.
    1. Krinsky N.I. Carotenoid protection against oxidation. Pure Appl. Chem. 1979;51:649–660. doi: 10.1351/pac197951030649.
    1. Di Mascio P., Kaiser S., Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 1989;274:532–538. doi: 10.1016/0003-9861(89)90467-0.
    1. Marx M., Schieber A., Carle R. Quantitative determination of carotene stereoisomers in carrot juices and vitamin supplemented (ATBC) drinks. Food Chem. 2000;70:403–408. doi: 10.1016/S0308-8146(00)00096-0.
    1. Khoo H.-E., Prasad K.N., Ismail A., Mohd-Esa N. Carotenoids from Mangifera pajang and their antioxidant capacity. Molecules. 2010;15:6699–6712.
    1. De Faria A.F., Hasegawa P.N., Chagas E.A., Pio R., Purgatto E., Mercadante A.Z. Cultivar influence on carotenoid composition of loquats from Brazil. J. Food Compos. Anal. 2009;22:196–203. doi: 10.1016/j.jfca.2008.10.014.
    1. Chen J.P., Tai C.Y., Chen B.H. Improved liquid chromatographic method for determination of carotenoids in Taiwanese mango (Mangifera indica L.) J. Chromatogr. A. 2004;1054:261–268.
    1. Chen J.P., Tai C.Y., Chen B.H. Effects of different drying treatments on the stability of carotenoids in Taiwanese mango (Mangifera indica L.) Food Chem. 2007;100:1005–1010.
    1. Lessin W.J., Schwartz S.J. Quantification of cis-trans isomers of provitamin A carotenoids in fresh and processed fruits and vegetables. J. Agric. Food Chem. 1997;45:3728–3732. doi: 10.1021/jf960803z.
    1. Li F., Murillo C., Wurtzel E.T. Maize Y9 encodes a product essential for 15-cis-ζ-carotene isomerization. Plant Physiol. 2007;144:1181–1189. doi: 10.1104/pp.107.098996.
    1. Hulshof P.J.M., Kosmeijer-Schuil T., West C.E., Hollman P.C.H. Quick screening of maize kernels for provitamin A content. J. Food Compos. Anal. 2007;20:655–661. doi: 10.1016/j.jfca.2006.04.014.
    1. Rodriguez-Amaya D.B. The Retention of Provitamin A Carotenoids in Prepared, Processed, and Stored Foods. John Snow Inc; Rio de Janeiro, Brazil: 1997. Carotenoids and Food Preparation.
    1. During A., Smith M.K., Piper J.B., Smith J.C. Carotene 15,15’-dioxygenase activity in human tissues and cells: Evidence of an iron dependency. J. Nutr. Biochem. 2001;12:640–647. doi: 10.1016/S0955-2863(01)00184-X.
    1. Holden J.M., Eldridge A.L., Beecher G.R., Buzzard I.M., Bhagwat A.S., Davis C.S., Douglass L.W., Gebhardt E.S., Haytowitz D., Schakel S. Carotenoid content of U.S. foods: An update of the database. J. Food Compos. Anal. 1999;12:169–196.
    1. Guo W.-H., Tu C.-Y., Hu C.-H. Cis-trans isomerizations of β-carotene and lycopene: A theoretical study. J. Phys. Chem. 2008;112:12158–12167.
    1. ESA . Carotenoid Isomers. ESA Application Note, 5600A. ESA Inc; Chelmsford, MA, USA: 2009. [(accessed on 7 October 2009)]. Available online: .
    1. Kuki M., Koyama Y., Nagae H. Triplet-sensitized and thermal isomerization of all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: Configurational dependence of the quantum yield of isomerization via the T1 state. J. Phys. Chem. 1991;95:7171–7180.
    1. Vásquez-Caicedo A.L., Schilling S., Carle R., Neidhart S. Effects of thermal processing and fruit matrix on beta-carotene stability and enzyme inactivation during transformation of mangoes into purée and nectar. Food Chem. 2007;102:1172–1186. doi: 10.1016/j.foodchem.2006.07.005.
    1. Lozano-Alejo N., Carrillo G.V., Pixley K., Palacios-Rojas N. Physical properties and carotenoid content of maize kernels and its nixtamalized snacks. Innov. Food Sci. Emerg. Technol. 2007;8:385–389. doi: 10.1016/j.ifset.2007.03.015.
    1. Tang Y.C, Chen B.H. Pigment change of freeze-dried carotenoid powder during storage. Food Chem. 2000;69:11–17.
    1. Chen B.H., Huang J.H. Degradation and isomerization of chlorophyll a and β-carotene as affected by various heating and illumination treatments. Food Chem. 1998;62:299–307. doi: 10.1016/S0308-8146(97)00201-X.
    1. Marx M., Stuparic M., Schieber A., Carle R. Effects of thermal processing on trans-cis-isomerization of β-carotene in carrot juices and carotene-containing preparations. Food Chem. 2003;83:609–617. doi: 10.1016/S0308-8146(03)00255-3.
    1. Breitenbach J., Sandmann G. ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta. 2005;220:785–793. doi: 10.1007/s00425-004-1395-2.
    1. Castenmiller J.J.M., West C.E. Bioavailability and bioconversion of carotenoids. Annu. Rev. Nutr. 1998;18:19–38. doi: 10.1146/annurev.nutr.18.1.19.
    1. Rao A.V., Rao L.G. Carotenoids and human health. Pharmacol. Res. 2007;55:207–216. doi: 10.1016/j.phrs.2007.01.012.
    1. Boileau T.W.M., Boileau A.C., Erdman J.W., Jr. Bioavailability of all-trans and cis-isomers of lycopene. Exp. Biol. Med. 2002;227:914–919.
    1. Schulz H., Baranska M., Baranski R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers. 2005;77:212–221. doi: 10.1002/bip.20215.
    1. Kong K.-W., Khoo H.-E, Prasad K.N., Ismail A., Tan C.-P., Rajab N.F. Revealing the power of the natural red pigment lycopene. Molecules. 2010;15:959–987. doi: 10.3390/molecules15020959.
    1. Blanquet-Diot S., Soufi M., Rambeau M., Rock E., Alric M. Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system. J. Nutr. 2009;139:876–883. doi: 10.3945/jn.108.103655.
    1. Failla M.L., Chitchumroonchokchai C., Ishida B.K. In vitro micellarization and intestinal cell uptake of cis isomers of lycopene exceed those of all-trans lycopene. J. Nutr. 2008;138:482–486.
    1. Shi J., Maguer M.L., Bryan M. Lycopene from Tomatoes. In: Shi J., Maguer M.L., Bryan M.L., editors. Functional Food: Biochemical & Processing Aspects. Vol. 2. CRC Press LCC; Danvers, MA, USA: 2002. pp. 135–167.
    1. Moraru C., Lee T.-C. Lycopene isomerization at gastric pH; Nutraceuticals & Functional Foods Session of IFT Annual Meeting. Las Vegas, NV, USA; Jul 12–16, 2004.
    1. Lee M.T., Chen B.H. Stability of lycopene during heating and illumination in a model system. Food Chem. 2002;78:425–432. doi: 10.1016/S0308-8146(02)00146-2.
    1. Tyssandier V., Reboul E., Dumas J.-F., Bouteloup-Demange C., Armand M., Marcand J., Sallas M., Borel P. Processing of vegetable-borne carotenoids in the human stomach and duodenum. Am. J. Physiol-Gastr. L. 2003;284:G913–G923.
    1. Tee E.-S., Lim C.-L. Carotenoid composition and content of Malaysian vegetables and fruits by the AOAC and HPLC methods. Food Chem. 1991;41:309–339. doi: 10.1016/0308-8146(91)90057-U.
    1. Losso J.N., Khachatryan A., Ogawa M., Godber J.S., Shih F. Random centroid optimization of phosphatidylglycerol stabilized lutein-enriched oil-in-water emulsions at acidic pH. Food Chem. 2005;92:737–744. doi: 10.1016/j.foodchem.2004.12.029.
    1. Matsuno T., Hirono T., Ikuno Y., Maoka T., Shimizu M., Komori T. Isolation of three new carotenoids and proposed metabolic pathways of carotenoids in hen's egg yolk. Comp. Biochem. Physiol. B. 1986;84:477–481. doi: 10.1016/0305-0491(86)90110-0.
    1. Handelman G.J. The evolving role of carotenoids in human biochemistry. Nutrition. 2001;17:818–822. doi: 10.1016/S0899-9007(01)00640-2.
    1. Emenhiser C., Sande L.C., Schwartza S.J. Capability of a polymeric C30 stationary phase to resolve cis-trans carotenoid isomers in reversed-phase liquid chromatography. J. Chromatogr. A. 1995;707:205–216. doi: 10.1016/0021-9673(95)00336-L.
    1. Sander L.C., Sharpless K.E., Pursch M. C30 stationary phases for the analysis of food by liquid chromatography. J. Chromatogr. A. 2000;880:189–202. doi: 10.1016/S0021-9673(00)00121-7.
    1. Tóth G., Szabolcs J. Occurrence of some mono-cis-isomers of asymmetric C40-carotenoids. Phytochem. 1981;20:2411–2415.
    1. Meléndez-Martínez A.J., Vicario I.M., Heredia F.J. Geometrical isomers of violaxanthin in orange juice. Food Chem. 2007;104:169–175. doi: 10.1016/j.foodchem.2006.11.017.
    1. Gross J. Pigments in Fruits: Food Science and Technology. Academic Press; Orlando, FL, USA: 1987.
    1. Meléndez-Martínez A.J., Britton G., Vicario I.M., Heredi F.J. HPLC analysis of geometrical isomers of lutein epoxide isolated from dandelion (Taraxacum officinale F. Weber ex Wiggers) Phytochemistry. 2006;67:771–777.
    1. Milanowska J., Gruszecki W.I. Heat-induced and light-induced isomerization of the xanthophyll pigment zeaxanthin. J. Photochem. Photobiol. B. 2005;80:178–186. doi: 10.1016/j.jphotobiol.2005.05.004.
    1. Kishimoto S., Maoka T., Nakayama M., Ohmiya A. Carotenoid composition in petals of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) Phytochemistry. 2004;65:2781–2787.
    1. Yahia E.M., Ornelas-Paz J.J., Gardea A. Extraction, separation and partial identification of ‘Ataulfo’ mango fruit carotenoids. Acta Hortic. 2006;712:333–338.
    1. Furr H.C., Clark R.M. Intestinal absorption and tissue distribution of carotenoids. J. Nutr. Biochem. 1997;8:364–377. doi: 10.1016/S0955-2863(97)00060-0.
    1. Scott K.J., Thurnham D.I., Hart D.J., Bingham S.A., Day K. The correlation between the intake of lutein, lycopene and β-carotene from vegetables and fruits, and blood plasma concentrations in a group of women aged 50-65 years in the UK. Brit. J. Nutr. 1996;75:409–418.
    1. Krinsky N.I., Johnson E.J. Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 2005;26:459–516. doi: 10.1016/j.mam.2005.10.001.
    1. Simpson K.L. Chemical Changes in Natural Food Pigments. In: Richardson T., Finley J.W., editors. Chemical Changes in Food during Processing. Van Nostrand Reinhold Company, Inc.; New York, NY, USA: 1985. pp. 409–437.
    1. Minguez-Mosquera M.I., Gandul-Rojas B., Garrido-Fernandez J., Gallardo-Guerrero L. Pigments present in virgin olive oil. J. Am. Oil Chem. Soc. 1990;67:192–196. doi: 10.1007/BF02539624.
    1. Takyi E.E.K. Bioavailability of Carotenoids from Vegetables versus Supplements. In: Watson R.R., editor. Vegetables, Fruits, and Herbs in Health Promotion. CRC Press LCC; Danvers, MA, USA: 2001. pp. 19–31.
    1. Marín A., Ferreres F., Tomas-Barberan F.A., Gil M.I. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.) J. Agric. Food Chem. 2004;52:3861–3869.
    1. Markus F., Daood H.G., Kapitany J., Biacs P.A. Change in the carotenoid and antioxidant content of spice red pepper (paprika) as a function of ripening and some technological factors. J. Agric. Food Chem. 1999;47:100–107.
    1. Wieruszewski J.B. Simon Fraser University; Ottawa, Canada: 2002. Astaxanthin bioavailabity, retention efficiency and kinetics in Atlantic salmon (Salmo salar) as influenced by pigment concentration and method of administration (kinetics only) Master Thesis.
    1. De Pee S., West C.E., Permaesih D., Martuti S., Muhilal , Hautvast J.G.A.J. Increasing intake of orange fruits is more effective than increasing intake of dark-green leafy vegetables in increasing serum concentrations of retinol and β-carotene in schoolchildren in Indonesia. Am. J. Clin. Nutr. 1998;68:1058–1067.
    1. Muzhingi T., Yeum K.J., Russell R.M., Johnson E.J., Qin J., Tang G. Determination of carotenoids in yellow maize, the effects of saponification and food preparations. Intl. J. Vit. Nutr. Res. 2008;78:112–120. doi: 10.1024/0300-9831.78.3.112.
    1. Rajyalakshmi P., Venkatalaxmi K., Venkatalakshmamma K., Jyothsna Y., Devi K.B., Suneetha V. Total carotenoid and beta-carotene contents of forest green leafy vegetables consumed by tribals of south India. Plant Food Hum. Nutr. 2001;56:225–238. doi: 10.1023/A:1011125232097.
    1. Bhaskarachary K., Rao D.S.S., Deosthale Y.G., Reddy V. Carotene content of some common and less familiar foods of plant origin. Food Chem. 1995;54:189–193. doi: 10.1016/0308-8146(95)00029-I.
    1. Setiawan B., Sulaeman A., Giraud D.W., Driskell J.A. Carotenoid content of selected Indonesian fruits. J. Food Compos. Anal. 2001;14:169–176. doi: 10.1006/jfca.2000.0969.
    1. Hulshof P.J.M., Chao X., Van De Bovenkamp P., Muhilal, West C.E. Application of a validated method for the determination of provitamin A carotenoids in Indonesia foods of different maturity and origin. J. Agric. Food Chem. 1997;45:1174–1179. doi: 10.1021/jf9603137.
    1. Yano M., Kato M., Ikoma Y., Kawasaki A., Fukazawa Y., Sugiura M., Matsumoto H., Oohara Y., Nagao A., Ogawa K. Quantitation of carotenoids in raw and processed fruits in Japan. Food Sci. Technol. Res. 2005;11:13–18.
    1. Lako J., Trenerry V.C., Wahlqvist M., Wattanapenpaiboon N., Sotheeswaran S., Premier R. Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem. 2007;101:1727–1741. doi: 10.1016/j.foodchem.2006.01.031.
    1. Bramley P.M. Is lycopene beneficial to human health? Phytochem. 2000;54:233–236.
    1. Charoensiri R., Kongkachuichai R., Suknicom S., Sungpuag P. Beta-carotene, lycopene, and alpha-tocopherol contents of selected Thai fruits. Food Chem. 2009;113:202–207. doi: 10.1016/j.foodchem.2008.07.074.
    1. Granado-Lorencio F., Olmedilla-Alonso B., Herrero-Barbudo C., Blanco-Navarro I., Pérez-Sacristán B., Blázquez-García S. In vitro bioaccessibility of carotenoids and tocopherols from fruits and vegetables. Food Chem. 2007;102:641–648.
    1. Levy A., Harel S., Palevitch D., Akiri B., Menagem E., Kanner J. Carotenoid pigments and β-carotene in paprika fruits (Capsicum spp.) with different genotypes. J. Agric. Food Chem. 1995;43:362–366.
    1. Dias M.G., Filomena M., Camões G.F.C., Oliveira L. Carotenoids in traditional Portuguese fruits and vegetables. Food Chem. 2009;113:808–815. doi: 10.1016/j.foodchem.2008.08.002.
    1. Gil M.I., Tomás-Barberán F.A., Hess-Pierce B., Kader A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem. 2002;50:4976–4982. doi: 10.1021/jf020136b.
    1. Speek A.J., Speek-Saichua S., Schreurs W.H.P. Total carotenoids and β-carotene contents of Thai vegetables and effects of processing. Food Chem. 1988;27:245–251. doi: 10.1016/0308-8146(88)90010-6.
    1. Begum A., Pereira S.M. The β-carotene content of Indian edible green leaves. Trop. Geogr. Med. 1977;29:47–50.
    1. Lakshminarayana R., Raju M., Krishnakantha T.P., Baskaran V. Determination of major carotenoids in a few Indian leafy vegetables by high-performance liquid chromatography. J. Agric. Food Chem. 2005;53:2838–2842.
    1. Singh J., Upadhyay A.K., Prasad K., Bahadur A., Rai M. Variability of carotenes, vitamin C, E and phenolics in Brassica vegetables. J. Food Compos. Anal. 2007;20:106–112. doi: 10.1016/j.jfca.2006.08.002.
    1. Murkovic M.U., Mülleder U., Neunteufl H. Carotenoid content in different varieties of pumpkins. J. Food Comp. Anal. 2002;15:633–638. doi: 10.1006/jfca.2002.1052.
    1. Pandey S., Singh J., Upadhyay A.K., Ram D., Rai M. Ascorbate and carotenoid content in an Indian collection of pumpkin (Cucurbita moschata Duch. Ex Poir.) Cucurbit Gen. Coop. Rep. 2003;26:51–53.
    1. Aruna G., Mamatha B.S., Baskaran V. Lutein content of selected Indian vegetables and vegetable oils determined by HPLC. J. Food Compos. Anal. 2009;22:632–636. doi: 10.1016/j.jfca.2009.03.006.
    1. Khoo H.E., Ismail A., Mohd-Esa N., Idris S. Carotenoid content of underutilized fruits. Plant Food Hum. Nutr. 2008;63:170–175. doi: 10.1007/s11130-008-0090-z.
    1. Yuan J.-M., Gao Y.-T., Ong C.-N., Ross R.K., Yu M.C. Prediagnostic level of serum retinol in relation to reduced risk of hepatocellular carcinoma. J. Natl. Cancer I. 2006;98:482–490. doi: 10.1093/jnci/djj104.
    1. Homnava A., Payne J., Koehler P., Eitenmiller R. Provitamin A (alpha-carotene, beta-carotene and beta-cryptoxanthin) and ascorbic acid content of Japanese and American persimmons. J. Food Quality. 1990;13:85–95. doi: 10.1111/j.1745-4557.1990.tb00009.x.
    1. Xianquan S., Shi J., Kakuda Y., Yueming J. Stability of lycopene during food processing and storage. J. Med. Food. 2005;8:413–422. doi: 10.1089/jmf.2005.8.413.
    1. USDA database . Agricultural Research Service, United States Department of Agriculture; Washington, DC, USA: 2011. [(accessed on 20 January 2011)]. USDA National Nutrient Database for Standard Reference, Release 23. Available online: .
    1. Camara B., Hugueney P., Bouvier F., Kuntz M., Monéger R., Kwang W.J., Jonathan J. Biochemistry and molecular biology of chromoplast development. Int. Rev. Cytol. 1995;163:175–247. doi: 10.1016/S0074-7696(08)62211-1.
    1. Bouvier F., d'Harlingue A., Hugueney P., Marin E., Marion-Poll A., Camara B. Xanthophyll biosynthesis. J. Biol. Chem. 1996;271:28861–28867.
    1. Prasad K. N., Lyee C., Khoo H.E., Bao Y., Azlan A., Amin. I. Carotenoids and antioxidant capacities from Canarium odontophyllum Miq. fruits. Food Chem. 2011;124:1549–1555. doi: 10.1016/j.foodchem.2010.08.010.
    1. Tanaka Y. Flower colour and cytochromes P450. Phytochem. Rev. 2006;5:283–291. doi: 10.1007/s11101-006-9003-7.
    1. Bakker J., Timberlake C.F. Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines. J. Agric. Food Chem. 1997;45:35–43. doi: 10.1021/jf960252c.
    1. Ben-Amotz A., Fishler R. Analysis of carotenoids with emphasis on 9-cis β-carotene in vegetables and fruits commonly consumed in Israel. Food Chem. 1998;62:515–520. doi: 10.1016/S0308-8146(97)00196-9.
    1. Levin I., De Vos C.H.R., Tadmor Y., Bovy A., Lieberman M., Oren-Shamir M., Segev O., Kolotilin I., Keller M., Ovadia R. High pigment tomato mutants—more than just lycopene (a review) Isr. J. Plant Sci. 2006;54:179–190. doi: 10.1560/IJPS_54_3_179.

Source: PubMed

3
Subskrybuj