Endothelial Dysfunction in Obesity-Induced Inflammation: Molecular Mechanisms and Clinical Implications

Ibrahim Kalle Kwaifa, Hasnah Bahari, Yoke Keong Yong, Sabariah Md Noor, Ibrahim Kalle Kwaifa, Hasnah Bahari, Yoke Keong Yong, Sabariah Md Noor

Abstract

Obesity is characterized by the excessive deposition of fat that may interfere with the normal metabolic process of the body. It is a chronic condition associated with various metabolic syndromes, whose prevalence is grossly increasing, and affects both children and adults. Accumulation of excessive macronutrients on the adipose tissues promotes the secretion and release of inflammatory mediators, including interleukin-6 (IL-6), interleukin 1β, tumor necrotic factor-α (TNF-α), leptin, and stimulation of monocyte chemoattractant protein-1 (MCP-1), which subsequently reduce the production of adiponectin thereby initiating a proinflammatory state. During obesity, adipose tissue synthesizes and releases a large number of hormones and cytokines that alter the metabolic processes, with a profound influence on endothelial dysfunction, a situation associated with the formation of atherosclerotic plaque. Endothelial cells respond to inflammation and stimulation of MCP-1, which is described as the activation of adhesion molecules leading to proliferation and transmigration of leukocytes, which facilitates their increase in atherogenic and thromboembolic potentials. Endothelial dysfunction forms the cornerstone of this discussion, as it has been considered as the initiator in the progression of cardiovascular diseases in obesity. Overexpression of proinflammatory cytokines with subsequent reduction of anti-inflammatory markers in obesity, is considered to be the link between obesity-induced inflammation and endothelial dysfunction. Inhibition of inflammatory mechanisms and management and control of obesity can assist in reducing the risks associated with cardiovascular complications.

Keywords: adipose tissue; atherosclerosis; endothelial dysfunction; inflammation; obesity.

Conflict of interest statement

The authors declared no conflict of interest.

Figures

Figure 1
Figure 1
Obesity, inflammation, and related metabolic syndrome. The linking mechanisms: Obesity results from the accumulation of excessive macronutrients in the adipose tissues, which stimulate them to release inflammatory mediators such as TNF-α and IL-6, and the subsequent decreased production of adiponectin, leading to the predisposition of the endothelium to a proinflammatory state gearing to endothelial dysfunction. In addition, excessive accumulation of free fatty acids also activates proinflammatory serine kinase cascades, such as IkB kinase, Toll-like receptor, and c-Jun N-terminal kinase, which in turn facilitate adipose tissue to release IL-6 that triggers hepatocytes to produce and secrete CRP. All these are associated with the development of cardiovascular diseases, including atherosclerosis and other metabolic syndromes, as well as non-cardiovascular diseases such as renal diseases. A decreased level of adiponectin is also characterized by impaired fasting glucose, coronary artery calcification, and stroke. Hypoxia is described to be the etiology of necrosis and macrophage infiltration into adipose tissue, leading to overproduction of proinflammatory mediators [15].
Figure 2
Figure 2
Important functions of endothelial cells: Vascular endothelium (VE) regulates vascular homeostasis through maintaining a delicate balance between the secretion of vasodilators and vasoconstrictors. It synthesizes a series of bioactive substances that moderate vascular tone, control permeability, regulate proliferation and migration of smooth muscle cells, decrease leucocyte migration, and regulate platelet adhesion and aggregation. VE also controls cellular adhesion, vascular inflammation, and angiogenesis [5].
Figure 3
Figure 3
Mechanisms of endothelial cell (ECs) dysfunction associated with inflammation. Inflammation leads to an imbalance between proinflammatory and procoagulant, and anti-inflammatory and anticoagulant properties of the endothelium, thus contributing to disturbance of the hemostatic system. Activated or injured ECs mostly secrete procoagulant or antifibrinolytic components, resulting in the subsequent reduction in the expression of anticoagulant and profibrinolytic components. Additionally, activated ECs can express other factors such as TF and adhesion molecules, which have an important role in mediating the interaction of neutrophils and platelets with endothelium, further promoting the inflammatory and hemostatic responses. These disturbances shift the function of ECs from an anticoagulant, anti-inflammatory, and vasodilatory state to a proinflammatory and procoagulant state [49,50].
Figure 4
Figure 4
Common mediators of inflammation associated with the disturbance of the fibrinolytic system: The main mediators of inflammation-induced activation of the hemostatic system, particularly the proinflammatory cytokines, include tumor necrotic factor-α (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6), which trigger the disturbances of the hemostatic system in different mechanisms, including platelet activation, TF-mediated activation of coagulation cascade, impaired function of anticoagulant pathways and fibrinolytic activities, and endothelial cell dysfunction [50].
Figure 5
Figure 5
Monocyte chemoattractant protein-1 (MCP-1) contributions to endothelial dysfunction during atherosclerosis. Damage on the vascular endothelium leads to the secretion of cytokines and chemokines and the expression of adhesion molecules by the injured endothelium. Leucocytes from the blood are attracted to the site of injury by chemokines, specifically the MCP-1. Initially, monocytes are attached to the endothelial lumen through molecular interactions with adhesion molecules. They transmigrate to the subendothelium, differentiate, and mature to macrophages that release cytokines. Once there are elevated levels of low-density lipoprotein (LDL) and cholesterol, the LDL-c penetrates and infiltrates the subendothelium, and oxidized to ox-LDL mediated by reactive oxidative species (ROS) and is retained in the intima. This results in the activation of endothelium leading to the transmigrations and proliferation of leukocytes (macrophages and T-lymphocytes). The macrophages then take up accumulated ox- LDL-c resulting forming cells and atherogenesis while T-lymphocytes differentiate to T-helper cells. These processes are associated with the secretion of proinflammatory cytokines, which combine with other growth factors to stimulate smooth muscle cells proliferation and migration into the sub-endothelial space (Figure 5). This indicates a fundamental stage in responding to vascular injury and the formation of a fibrous cap with the increased extracellular matrix, causing the thickening of the intima with the subsequent formation of atherosclerotic plaque.

References

    1. Saltiel A.R., Olefsky J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 2017;127:1–4. doi: 10.1172/JCI92035.
    1. Hernández H.R., Hernández L.E.S., Ramírez G.R., Reyes R.M.A. Obesity and Inflammation: Epidemiology, Risk Factors, and Markers of Inflammation. Int. J. Endocrinol. 2013;2013:11.
    1. Fleming N.T., Robinson M., Thomson B., Graetz N., Margono C., Mullany E.C., Biryukov S., Abbafati C., Abera S.F., Abraham J.P., et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–781.
    1. Hossain P., Kawar B., El Nahas M. Obesity and diabetes in the developing world—A growing challenge. N. Engl. J. Med. 2007;356:213–215. doi: 10.1056/NEJMp068177.
    1. Sena C.M., Carrilho F., Seiça R.M. Endothelial Dysfunction in Type 2 Diabetes: Targeting Inflammation. Endothelial Dysfunction—Old Concepts and New Challenges, Helena Lenasi, IntechOpen. [(accessed on 17 January 2020)];2018 doi: 10.5772/intechopen.76994. Available online: .
    1. Dhananjayan R., Koundinya K.S.S., Malati T., Kutala V.K. Endothelial Dysfunction in Type 2 Diabetes Mellitus. Indian J. Clin. Biochem. 2016;31:372–379. doi: 10.1007/s12291-015-0516-y.
    1. Takada Y., Hisamatsu T., Kamada N., Takayama T., Kobayashi T., Chinen H. Monocyte chemoattractant protein-1 contributes to gut homeostasis and intestinal inflammation by composition of IL-10-producing regulatory macrophage subset. J. Immunol. 2010;184:2671–2676. doi: 10.4049/jimmunol.0804012.
    1. Darvall K.A.L., Sam R.C., Silverman S.H., Bradbury A.W., Adam D.J. Obesity and Thrombosis. Eur. J. Vasc. Endovasc. Surg. 2007;33:223–233. doi: 10.1016/j.ejvs.2006.10.006.
    1. Wilson R.M., Messaoudi I. The impact of maternal obesity during pregnancy on offspring immunity. Mol. Cell Endocrinol. 2015;418:134–142. doi: 10.1016/j.mce.2015.07.028.
    1. Lee H., Lee I.S., Choue R. Obesity, Inflammation and Diet. Pediatr. Gastroenterol. Hepatol. Nutr. 2013;16:143–152. doi: 10.5223/pghn.2013.16.3.143.
    1. Krzysztoszek J., Wierzejska E., Zielińska A. Obesity. An analysis of epidemiological and prognostic research. Arch. Med. Sci. 2015;11:24–33. doi: 10.5114/aoms.2013.37343.
    1. Lumeng C.N., Saltiel A.R., Lumeng C.N., Saltiel A.R. Inflammatory links between obesity and metabolic disease Find the latest version: Review series Inflammatory links between obesity and metabolic disease. J. Clin. Investig. 2011;121:2111–2117. doi: 10.1172/JCI57132.
    1. Azevedo I., Monteiro R. Chronic Inflammation in Obesity and the Metabolic Syndrome. Mediators Inflamm. 2010;2010:289645. doi: 10.1155/2010/289645.
    1. Mussbacher M., Salzmann M., Brostjan C., Hoesel B., Schoergenhofer C., Datler H., Hohensinner P., Basílio J., Petzelbauer P., Assinger A., et al. Cell Type-Specific Roles of NF- κ B Linking Inflammation and Thrombosis. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.00085.
    1. Ellulu M.S., Patimah I., Khaza’ai H., Rahmat A., Abed Y. Obesity and inflammation. Arch. Med. Sci. 2017;13:851–863. doi: 10.5114/aoms.2016.58928.
    1. Reaven G.M. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–1607. doi: 10.2337/diab.37.12.1595.
    1. Hursting S.D., Hursting M.J. Growth Signals, Inflammation, and Vascular Perturbations. Arterioscler. Thromb. Vasc. Biol. 2012:1766–1770. doi: 10.1161/ATVBAHA.111.241927.
    1. Phillips L.K., Hons M., Prins J.B. The Link Between Abdominal Obesity and the Metabolic Syndrome. Curr. Hypertens Rep. 2008;10:156–164. doi: 10.1007/s11906-008-0029-7.
    1. Canale M.P., Manca S., Martino G., Rovella V., Noce A., De Lorenzo A., Di Daniele N. Obesity-Related Metabolic Syndrome: Mechanisms of Sympathetic Overactivity. Int. J. Endocrinol. 2013;2013:865965. doi: 10.1155/2013/865965.
    1. Tilg H., Moschen A.R. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 2006;6:772–783. doi: 10.1038/nri1937.
    1. Karastergiou K., Mohamed-Ali V. The autocrine and paracrine roles of adipokines. Mol. Cell Endocrinol. 2010;318:69–78. doi: 10.1016/j.mce.2009.11.011.
    1. Segovia S.A., Vickers M.H., Gray C., Reynolds C.M. Maternal Obesity, Inflammation, and Developmental Programming. Biomed. Res. Int. 2014;2014:418975. doi: 10.1155/2014/418975.
    1. Segovia S.A., Vickers M.H., Reynolds C.M. The impact of maternal obesity on inflammatory processes and consequences for later offspring health outcomes. J. Dev. Orig. Health Dis. 2019;8:529–540. doi: 10.1017/S2040174417000204.
    1. Mongraw-Chaffin M., Foster M.C., Kalyani R.R. Vaidya, D1.; Burke, G.L.; Woodward, M.; Anderson, C.A. Obesity severity and duration are associated with incident metabolic syndrome: Evidence against metabolically healthy obesity from the multi-ethnic study of atherosclerosis. J. Clin. Endocrinol. Metab. 2016;101:4117–4124. doi: 10.1210/jc.2016-2460.
    1. Yau J.W., Teoh H., Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc. Disord. 2015;15:130. doi: 10.1186/s12872-015-0124-z.
    1. Katakami N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J. Atheroscler. Thromb. 2018;25:27–39. doi: 10.5551/jat.RV17014.
    1. Vilahur G., Ben-aicha S., Badimon L. New insights into the role of adipose tissue in thrombosis. Cardiovasc. Res. 2017;113:1046–1054. doi: 10.1093/cvr/cvx086.
    1. Nightingale T., Cutler D. The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story. J. Thromb. Haemost. 2013;11:192–201. doi: 10.1111/jth.12225.
    1. Möller K., Adolph O., Grünow J., Elrod J., Popa M., Ghosh S., Schwarz M., Schwale C., Grässle S., Huck V., et al. Mechanism and functional impact of CD40 ligand-induced von Willebrand factor release from endothelial cells. Thromb. Haemost. 2015;113:1095–1108. doi: 10.1160/TH14-04-0336.
    1. Carnevale R., Raparelli V., Nocella C., Bartimoccia S., Novo M., Severino A., De Falco E., Cammisotto V., Pasquale C., Crescioli C., et al. Gut-derived endotoxin stimulates factor VIII secretion from endothelial cells. Implications for hypercoagulability in cirrhosis. J. Hepatol. 2017;67:950–956. doi: 10.1016/j.jhep.2017.07.002.
    1. Sena C.M., Pereira A.M., Seica R. The endothelial dysfunction-A major mediator of diabetic vascular disease. Biochim. Biophys. Acta. 2013;1832:2216–2231. doi: 10.1016/j.bbadis.2013.08.006.
    1. Lee H.Y., Youn S.W., Cho H.J., Kwon Y.W., Lee S.W., Kim S.J., Park Y.B., Oh B.H., Kim H.S. FOXO1 impairs whereas statin protects endothelial dysfunction in diabetes through reciprocal regulation of kruppel-like factor2. Cardiovasc. Res. 2013;97:143–152. doi: 10.1093/cvr/cvs283.
    1. Omar A., Chatterjee T.K., Tang Y., Hui D.Y., Weintraub N.L. The proinflammatory phenotype of perivascular adipocytes. Atheros. Thromb. Vasc. Biol. 2014;34:1631–1636. doi: 10.1161/ATVBAHA.114.303030.
    1. Sena C.M., Pereira A., Fernandes R., Letra L., Seica R.M. Adiponectin improves endothelial function in mesenteric arteries of rats fed a high-fat diet. Role of perivascular adipose tissue. Br. J. Pharmacol. 2017;174:3514–3526. doi: 10.1111/bph.13756.
    1. Jia G., Habibi J., Bostick B.P., Ma L., DeMarco V.G., Aroor A.R., Hayden M.R., Whaley-Connell A.T., Sowers J.R. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet. Hypertension. 2015;65:531–539. doi: 10.1161/HYPERTENSIONAHA.114.04737.
    1. Kalupahana N.S., Massiera F., Quignard-Boulange A., Ailhaud G., Voy B.H., Wasserma D.H., Moustaid-Moussa N. Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance. Obesity. 2012;20:48–56. doi: 10.1038/oby.2011.299.
    1. Roberts A.C., Porter K.E. Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diab. Vasc. Dis. Res. 2013;10:472–482. doi: 10.1177/1479164113500680.
    1. Brady E.M., Webb D.R., Morris D.H., Khunti K., Talbot D.S., Sattar N., Davies M.J. Investigating endothelial activation and oxidative stress in relation to glycaemic control in a multiethnic population. Exp. Diabetes Res. 2012;2012:386041. doi: 10.1155/2012/386041.
    1. Sprague A.H., Kalil R.A. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem. Pharmacol. 2009;78:539–552. doi: 10.1016/j.bcp.2009.04.029.
    1. Xia F., Wang C., Jin Y., Liu Q., Meng Q., Liu K., Sun H. Luteolin protects HUVECs from TNF-alpha-induced oxidative stress and inflammation via its effects on the Nox4/ROS-NF-kappaB and MAPK pathways. J. Atheroscler. Thromb. 2014;21:768–783. doi: 10.5551/jat.23697.
    1. Rathinam V.A., Fitzgerald K.A. Inflammasome complexes. Emerging mechanisms and effector functions. Cell. 2016;165:792–800. doi: 10.1016/j.cell.2016.03.046.
    1. Lubrano V., Balzan S. Consolidated and emerging inflammatory markers in coronary artery disease. World J. Exp. Med. 2015;5:21–32. doi: 10.5493/wjem.v5.i1.21.
    1. Daniel G., Guardado M.R., Winner D., Fiorentino T.V., Pengou Z., Cornell J., Andreozzi F., Jenkinson C., Ceersosimo E., Federici M., et al. The inflammatory status score including IL-6, TNF-α, osteopontin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycaemia in type 2 diabetes mellitus. Acta Diabetol. 2014;51:123–131. doi: 10.1007/s00592-013-0543-1.
    1. Kaptoge S., Seshasai S.R., Gao P., Freitag D.F., Butterworth A.S., Borglykke A., Di Angelantonio E., Gudhason V., Rumley A., Lowe G.D., et al. Inflammatory cytokines and risk of coronary heart disease: New perspective study and updated meta-analysis. Eur. Heart J. 2014;35:578–589. doi: 10.1093/eurheartj/eht367.
    1. Puri R., Nissen S.E., Shao M., Elshazly M.B., Kataoka Y., Kapadia S.R., Tuzcu E.M., Nicholls S.J. Non-HDL cholesterol and triglycerides. Implications for coronary atheroma progression and clinical events. Atheroscler. Thromb. Vasc. Biol. 2016;36:2220–2228. doi: 10.1161/ATVBAHA.116.307601.
    1. Krintus M., Kozinski M., Kubica J., Sypniewska G. Critical appraisal of inflammatory markers in cardiovascular risk stratification. Crit. Rev. Clin. Lab. Sci. 2014;51:263–279. doi: 10.3109/10408363.2014.913549.
    1. Papapanagiotou A., Siasos G., Kassi E., Gargalionis A.N., Papavassiliou A.G. Novel inflammatory markers in hyperlipidaemia. Clin. Implic. Curr. Med. Chem. 2015;22:2727–2743. doi: 10.2174/0929867322666150520095008.
    1. Levi M., van der Poll T., Schultz M. Infection and inflammation as risk factors for thrombosis and atherosclerosis. Semin. Thromb. Hemost. 2012;38:506–514. doi: 10.1055/s-0032-1305782.
    1. Levi M., van der Poll T. Inflammation and coagulation. Crit. Care Med. 2010;38:526–534. doi: 10.1097/CCM.0b013e3181c98d21.
    1. Margetic S. Review Inflammation and haemostasis. Biochem. Med. 2012;22:49–62. doi: 10.11613/BM.2012.006.
    1. Han M.S., Jung D.Y., Morel C., Lakhani S.A., Kim J.K., Flavell R.A., Davis R.J. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science. 2013;339:218–222. doi: 10.1126/science.1227568.
    1. Wang J.C., Bennett M. Aging and Atherosclerosis: Mechanisms, Functional Consequences, and Potential Therapeutics for Cellular Senescence. Circ. Res. 2012;111:245–259. doi: 10.1161/CIRCRESAHA.111.261388.
    1. Khaidakov M., Wang X., Mehta J.L. Potential involvement of LOX-1 in functional consequences of endothelial senescence. PLoS ONE. 2011;6:e20964. doi: 10.1371/journal.pone.0020964.
    1. Bolton E., Rajkumar C. The ageing cardiovascular system. Rev. Clin. Gerontol. 2010;21:99–109. doi: 10.1017/S0959259810000389.
    1. Lund G., Zaina S. Atherosclerosis: An epigenetic balancing act that goes wrong. Curr. Atheroscler. Rep. 2011;13:208–214. doi: 10.1007/s11883-011-0174-3.
    1. Ventura A., Luzi L., Pacini S., Baldari C.T., Pelicci P.G. The p66Shclongevity gene is silenced through epigenetic modifications of an alternative promoter. J. Biol. Chem. 2002;277:22370–22376. doi: 10.1074/jbc.M200280200.
    1. Willeit P., Willeit J., Brandstatter A., Ehrlenbach S., Mayr A., Gasperi A., Weger S., Oberhollenzer F., Reindl M., Kronenberg. F., et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler. Thromb. Vasc. Biol. 2010;30:1649–1656. doi: 10.1161/ATVBAHA.110.205492.
    1. Panayiotou A.G., Nicolaides A.N., Griffin M., Tyllis T., Georgiou N., Bond D., Martin R.M., Hoppensteadt D., Fareed J., Humphries S.E. Leukocyte telomere length is associated with measures of subclinical atherosclerosis. Atherosclerosis. 2010;211:176–181. doi: 10.1016/j.atherosclerosis.2010.01.037.
    1. Gray K., Bennett M. Role of DNA damage in atherosclerosis: Bystander or participant? Biochem. Pharmacol. 2011;82:693–700. doi: 10.1016/j.bcp.2011.06.025.
    1. Galic S., Oakhill J.S., Steinberg G.R. Adipose tissue as an endocrine organ. Mol. Cell Endocrinol. 2010;316:129–139. doi: 10.1016/j.mce.2009.08.018.
    1. Lamers D., Schlich R., Greulich S., Sasson S., Sell H., Eckel J. Oleic acid and adipokines synergize in inducing proliferation and inflammatory signaling in human vascular smooth muscle cells. J. Cell Mol. Med. 2011;15:1177–1188. doi: 10.1111/j.1582-4934.2010.01099.x.
    1. Olefsky J.M., Glass C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 2010;72:219–246. doi: 10.1146/annurev-physiol-021909-135846.
    1. Riahi Y., Cohen G., Shamni O., Sasson S. Signaling and cytotoxic functions of 4-hydroxyalkenals. Am. J. Physiol. Endocrinol. Metab. 2010;299:E879–E886. doi: 10.1152/ajpendo.00508.2010.
    1. Riahi Y., Sin-Malia Y., Cohen G., Alpert E., Gruzman A., Eckel J., Staels B., Guichardant M., Sasson S. The natural protective mechanism against hyperglycemia in vascular endothelial cells: Roles of the lipid peroxidation product 4-hydroxydodecadienal and peroxisome proliferator-activated receptor delta. Diabetes. 2010;59:808–818. doi: 10.2337/db09-1207.
    1. Tatarkova Z., Kuka S., Racay P., Lehotsky J., Dobrota D., Mistuna D., Kaplan P. Effects of ageing on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart. Physiol. Res. 2011;60:281–289. doi: 10.33549/physiolres.932019.
    1. Matthews C., Gorenne I., Scott S., Figg N., Kirkpatrick P., Ritchie A., Goddard M., Bennett M. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: Effects of telomerase and oxidative stress. Circ. Res. 2006;99:156–164. doi: 10.1161/01.RES.0000233315.38086.bc.
    1. Cohen G., Riahi Y., Sasson S. Lipid Peroxidation of Poly-Unsaturated Fatty Acids in Normal and Obese Adipose Tissues. Arch. Physiol. Biochem. 2011;117:131–139. doi: 10.3109/13813455.2011.557387.
    1. Olive M., Harten I., Mitchell R., Beers J.K., Djabali K., Cao K., Erdos M.R., Blair C., Funke B., Smoot L., et al. Cardiovascular pathology in Hutchinson-Gilford progeria: Correlation with the vascular pathology of ageing. Arterioscler. Thromb. Vasc. Biol. 2010;30:2301–2309. doi: 10.1161/ATVBAHA.110.209460.
    1. Goldenberg L., Saliba W., Hayek H., Hasadia R., Zeina A.R. The Impact of Abdominal Fat on Abdominal Aorta Calcification Measured on Non-Enhanced CT. Medicine. 2018;97:e13233. doi: 10.1097/MD.0000000000013233.
    1. Farhat N., Thorin-Trescases N., Voghel G., Villeneuve L., Mamarbachi M., Perrault L.P., Carrier M., Thorin E. Stress-induced senescence predominates in endothelial cells isolated from atherosclerotic chronic smokers. Can. J. Physiol. Pharmacol. 2008;86:761–769. doi: 10.1139/Y08-082.
    1. Carmo L.S., Burdmann E.A., Fessel M.R., Almeida Y.E., Pescatore L.A., Farias-Silva E., Gamarra L.F., Lopes G.H., Aloia T.P.A., Liberman M. Expansive Vascular Remodeling and Increased Vascular Calcification Response to Cholecalciferol in a Murine Model of Obesity and Insulin Resistance. Arterioscler. Thromb. Vasc. Biol. 2019;39:200–211. doi: 10.1161/ATVBAHA.118.311880.
    1. Gerhard M., Roddy M.A., Creager S.J., Creager M.A. Aging progressively impairs endothelium-dependent vasodilation in forearm resistance vessels of humans. Hypertension. 1996;27:849–853. doi: 10.1161/01.HYP.27.4.849.
    1. Gui T., Shimokado A., Sun Y., Akasaka T., Muragaki Y. Diverse roles of macrophages in atherosclerosis: From inflammatory biology to biomarker discovery. Mediat. Inflamm. 2012 doi: 10.1155/2012/693083.
    1. Kamada N., Seo S.U., Chen G.Y., Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013;13:321–335. doi: 10.1038/nri3430.
    1. Kasahara K., Tanoue T., Yamashita T., Yodoi K., Matsumoto T., Emoto T., Mizoguchi T., Hayashi T., Kitano N., Sasaki N., et al. Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. J. Lipid Res. 2017;58:519–528. doi: 10.1194/jlr.M072165.
    1. Jie Z., Xia H., Zhong S., Feng O., Shenghui L., Liang S., Zhong H., Liu Z., Gao Y., Hui Z., et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017;8:845. doi: 10.1038/s41467-017-00900-1.
    1. Li X., Shimizu Y., Kimura I. Gut microbial metabolite short-chain fatty acids and obesity. Biosci. Microbiota Food Health. 2017;36:135–140. doi: 10.12938/bmfh.17-010.
    1. Brown J.M., Hazen S.L. The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annu. Rev. Med. 2015;66:343–359. doi: 10.1146/annurev-med-060513-093205.
    1. Brown J.M., Hazen S.L. Microbial modulation of cardiovascular disease. Nat. Rev. Microbiol. 2018;16:171–181. doi: 10.1038/nrmicro.2017.149.
    1. Gopalakrishnan V., Helmink B.A., Spencer C.N., Reuben A., Wargo J.A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33:570–580. doi: 10.1016/j.ccell.2018.03.015.
    1. Bergeron N., Williams P.T., Lamendella R., Faghihnia N., Grube A., Li X., Wang Z., Knight R., Jansson J.K., Hazen S.L., et al. Diets high in resistant starch increase plasma levels of trimethylamine- N-oxide, a gut microbiome metabolite associated with CVD risk. Br. J. Nutr. 2016;116:2020–2029. doi: 10.1017/S0007114516004165.
    1. Nirmalkar K., Murugesan S., Pizano-Zárate M.L., Villalobos-Flores L.E., García-González C., Morales-Hernández R.M., Nuñez-Hernández J.A., Hernández-Quiroz F., Romero-Figueroa M.D.S., Hernández-Guerrero C., et al. Gut Microbiota and Endothelial Dysfunction Markers in Obese Mexican Children and Adolescents. Nutrients. 2018;10:2009. doi: 10.3390/nu10122009.
    1. Ma J., Li H. The Role of Gut Microbiota in Atherosclerosis and Hypertension. Front. Pharmacol. 2018;9:1–14. doi: 10.3389/fphar.2018.01082.
    1. Hong K.H., Ryu J., Han K.H. Brief report Monocyte chemoattractant protein-1—Induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood. 2019;105:1405–1408. doi: 10.1182/blood-2004-08-3178.
    1. Zhang X., Liu X., Shang H., Xu Y., Qian M. Monocyte chemoattractant protein-1 induces endothelial cell apoptosis in vitro through a p53-dependent mitochondrial pathway. Acta Biochim. Biophy. Sin. 2011;43:787–795. doi: 10.1093/abbs/gmr072.
    1. Viedt C., Dechend R., Fei J., Hänsch G.M., Kreuzer J., Orth S.R. MCP-1 Induces Inflammatory Activation of Human Tubular Epithelial Cells: Involvement of the Transcription Factors, Nuclear Factor-ΚB and Activating Protein-1. J. Am. Soc. Nephrol. 2002;13:1534–1547. doi: 10.1097/01.ASN.0000015609.31253.7F.
    1. Tichelaar Y.I., Kluin-Nelemans H.J., Meijer K. Infections and inflammatory diseases as risk factors for venous thrombosis. A systematic review. Thromb. Haemost. 2012;107:827–837.
    1. Wang S., Ye Q., Zeng X., Qiao S. Review Article Functions of Macrophages in the Maintenance of Intestinal Homeostasis. J. Immunol. Res. 2019;5:1–8. doi: 10.1155/2019/1512969.
    1. Liu Y., Hu Z.F., Liao H.H., Liu W., Liu J., Ma Z.G., Wu Q.Q., Xu M., Zhang N., Zhang Y., et al. Toll-like receptor 5 deficiency attenuates interstitial cardiac fibrosis and dysfunction induced by pressure overload by inhibiting inflammation and the endothelial-mesenchymal transition. Biochim. Biophys. Acta. 2015;1852:2456–2466. doi: 10.1016/j.bbadis.2015.08.013.
    1. Nie L., Lyros O., Medda R., Jovanovic N., Schmidt J.L., Otterson M.F., Johnson C.P., Behmaram B., Shaker R., Rafiee P. Endothelial-mesenchymal transition in normal human oesophagal endothelial cells cocultured with oesophagal adenocarcinoma cells: Role of IL-1beta and TGF-beta2. Am. J. Physiol. Cell Physiol. 2014;307:C859–C877. doi: 10.1152/ajpcell.00081.2014.
    1. Jackson A.O., Zhang J., Jiang Z., Yin K. Endothelial-to-mesenchymal transition: A novel therapeutic target for cardiovascular diseases. Trends Cardiovasc. Med. 2017;27:383–393. doi: 10.1016/j.tcm.2017.03.003.
    1. Zhou J., Li Y.S., Chien S. Shear stress-initiated signalling and it’s regulation of endothelial function. Arterioscler. Thromb. Vasc. Biol. 2014;34:2191–2198. doi: 10.1161/ATVBAHA.114.303422.
    1. Bussey C.E., Withers S.B., Aldous R.G., Edwards G., Heagerty A.M. Obesity-related perivascular adipose tissue damage is reversed by sustained weight loss in the rat. Arterioscler. Thromb. Vasc. Biol. 2016;36:1377–1385. doi: 10.1161/ATVBAHA.116.307210.
    1. Tabit C.E., Chung W.B., Hamburg N.M., Vita J.A. Endothelial dysfunction in diabetes mellitus: Molecular mechanisms and clinical implications. Rev. Endocr. Metab. Disord. 2010;11:61–74. doi: 10.1007/s11154-010-9134-4.
    1. Oyama J., Higashi Y., Node K. Do incretins improve endothelial function? Cardiovasc. Diabetol. 2014;13:21. doi: 10.1186/1475-2840-13-21.
    1. Berk K.A., Oudshoorn T.P., Verhoeven A.J.M., Mulder M.T., Roks A.J.M., Dik W.A., Timman R., Sijbrands E.J.G. Diet-induced weight loss and markers of endothelial dysfunction and inflammation in treated patients with type 2 diabetes. Clin. Nutr. ESPEN. 2016;15:101–106. doi: 10.1016/j.clnesp.2016.06.011.
    1. Kratzer A., Giral H., Landmesser U. High-density lipoproteins as modulators of endothelial cell functions: Alterations in patients with coronary artery disease. Cardiovasc. Res. 2014;103:350–361. doi: 10.1093/cvr/cvu139.
    1. Everett B.M., Pradhan A.D., Solomon D.H., Paynter N., MacFadyen J., Zaharris E., Gupta M., Clearfied M., Libby P., Hasan A.A.K., et al. Rationale and design of the cardiovascular inflammation reduction trial: A test of the inflammatory hypothesis of atherothrombosis. Am. Heart J. 2013;166:199–207. doi: 10.1016/j.ahj.2013.03.018.
    1. Nohria A., Kinlay S., Buck J.S., Readline W., Copeland-Halperin R., Kim S., Beckman J.A. The effect of salsalate therapy on endothelial function in a broad range of subjects. J. Am. Heart Associat. 2014;3:e000609. doi: 10.1161/JAHA.113.000609.
    1. Van Hout G.P., Bosch L., Ellenbroek G.H., de Haan J.J., Van Solinge W.W., Cooper M.A., Arslan F., de Jager S.C., Robertson A.A., Pasterkamp G., et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur. Heart J. 2017;38:828–836. doi: 10.1093/eurheartj/ehw247.

Source: PubMed

3
Subskrybuj