The renin angiotensin aldosterone system and COVID-19

Hadeel A Alsufyani, James R Docherty, Hadeel A Alsufyani, James R Docherty

Abstract

The ongoing pandemic has stimulated study of the Renin Angiotensin Aldosterone System (RAAS), and how it can be manipulated to treat COVID-19. Studies are examining whether drugs that act on the RAAS system might be useful to treat COVID-19. COVID-19 and the RAAS are closely linked both in infection and in possible post-infection inflammatory cascades. We detail the Physiology and Pharmacology of the RAAS including the effects of aldosterone and atrial natriuretic peptide. It is appropriate that the theoretical benefits of modulation of the RAAS should be considered based on available knowledge of the complexity of the system. In this short review we have tried to explain the actions of the angiotensin family of peptides and produce a relatively simple model and diagrammatic summary of the RAAS and the possible sites of intervention.

Keywords: Angiotensin; COVID-19; RAAS.

Conflict of interest statement

The authors declared that there is no conflict of interest.

© 2020 The Author(s).

Figures

Fig. 1
Fig. 1
The RAAS under normal conditions is a complex balance of pro- and anti-inflammatory mediators. For simplicity, some actions of agents are not indicated. The enzymes Renin, ACE1, ACE2 and aminopeptidases (AP) are displayed in small rectangles and receptors are displayed in small circles. Colour coding: red for generally pro-inflammatory pathways (arrows) and mediators, blue for generally anti-inflammatory pathways (arrows) and mediators. PRO indicates pro-inflammatory etc, ANTI indicates anti-inflammatory. Large rectangles show target tissues. Actions on cardiac atria are shown as stimulation or inhibition of atrial natriuretic peptide (ANP) secretion (due to the complexity of the diagram, ANP secretion is shown both top left and right). Actions on the zona glomerulosa of adrenal cortex are shown as aldosterone secretion. Actions shown on renal tubules are sodium (Na+) retention (aldosterone) and sodium (Na+) excretion (ANP). Widespread actions (PRO or ANTI) on multiple target tissues are Inflammation, vasoconstriction, proliferation, endothelial and pneumocyte dysfunction, etc. Background shading indicates: ACE1 products (pink); products requiring ACE2 alone or ACE2 and ACE1 (blue). Abbreviations: ANP, atrial natriuretic peptide; AP: aminopeptidases; AT1-R: AT1-receptor; AT2-R: AT2-receptor; AT4-R: AT4-receptor; mas-R: mas-receptor; MCR: mineralocorticoid receptor.
Fig. 2
Fig. 2
The relationship between the various angiotensin peptides.
Fig. 3
Fig. 3
The effects of Cov-2 virus on the RAAS. Cov-2 (CoV in yellow triangle) binds to ACE2, reducing the number of active ACE2 molecules. Thick arrows show diversion of precursors into the ACE1 product signalling pathways; thin arrows show diminished ACE2 product signalling pathways. The system is shifted towards pro-inflammatory pathways. Colour coding: red for generally pro-inflammatory pathways (arrows) and agents, blue for generally anti-inflammatory pathways (arrows) and agents. Abbreviations: ANP, atrial natriuretic peptide; AT1-R: AT1-receptor; AT2-R: AT2-receptor; AT4-R: AT4-receptor; CoV: Cov-2 virus bound to ACE2; mas-R: mas-receptor; MCR: mineralocorticoid receptor. For general description, see Fig. 1.
Fig. 4
Fig. 4
Possible sites of drug action in manpulating the RAAS system that may potentially reduce the effects of Cov-2. Numbers 1–7 in purple refer to numbered sections (5.1-5.7) of the text concerning potential sites of drug action. Abbreviations: ANP, atrial natriuretic peptide (ANP); AT1-R: AT1-receptor; AT2-R: AT2-receptor; AT4-R: AT4-receptor; CoV: Cov-2 virus bound to ACE2; mas-R: mas-receptor; MCR: mineralocorticoid receptor. For general description, see Fig. 1.

References

    1. Arendse L.B., Danser A.H.J., Poglitsch M., Touyz R.M., Burnett J.C., Jr., Llorens-Cortes C.1, Ehlers M.R., Sturrock E.D. Novel, therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure. Pharmacol. Rev. 2019;71(4):539–570.
    1. Bader M., Alenina N., Young D., Santos R.A.S., Touyz R.M. The meaning of mas. Hypertension. 2018;72:1072–1075.
    1. Bernstein K.E., Khan Z., Giani J.F., Cao D.Y., Bernstein E.A., Shen X.Z. Angiotensin-converting enzyme in innate and adaptive immunity. Nat. Rev. Nephrol. 2018;14(5):325–336.
    1. Bullock G.R., Steyaert I., Bilbe G., Carey R.M., Kips J., De Paepe J.B., Pauwels R., Praet M., Siragy H.M., de Gasparo M. Distribution of type-1 and type-2 angiotensin receptors in the normal human lung and in lungs from patients with chronic obstructive pulmonary disease. Histochem. Cell Biol. 2001;115(2):117–124.
    1. Channappanavar R., Fett C., Mack M., Ten Eyck P.P., Meyerholz D.K., Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol. 2017;198:4046–4053.
    1. Cha S.A., Park B.M., Kim S.H. Angiotensin-(1–9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor. Korean J. Physiol. Pharmacol. 2018;22(4):447–456.
    1. Crackower M.A., Sarao R., Oudit G.Y., Yagil C., Kozieradzki I., Scanga S.E., Oliveira-dos-Santos A.J., da Costa J., Zhang L., Pei Y., Scholey J., Ferrario C.M., Manoukian A.S., Chappell M.C., Backx P.H., Yagil Y., Penninger J.M. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822–828.
    1. Dalpiaz P.L., Lamas A.Z., Caliman I.F., Ribeiro R.F.J., Abreu G.R., Moyses M.R., Andrade T.U., Gouvea S.A., Alves M.F., Carmona A.K. Sex hormones promote opposite effects on ACE and ACE2 activity, hypertrophy and cardiac contractility in spontaneously hypertensive rats. PLoS ONE. 2015;10(5):e0127515.
    1. da Silva-Bertani D.C.T., Vileigas D.F., Mota G.A.F., de Souza S.L.B., Sant'Ana P.G., Freire P.P., de Tomasi L.C., Corrêa C.R., Padovani C.R., Fernandes T., de Oliveira E.M., Cicogna A.C. Increased angiotensin II from adipose tissue modulates myocardial collagen I and III in obese rats. Life Sci. 2020;1(252):117650.
    1. Davel A.P., Jaffe I.Z., Tostes R.C., Jaisser F., Belin de Chantemèle E.J. New roles of aldosterone and mineralocorticoid receptors in cardiovascular disease: translational and sex-specific effects. Am. J. Physiol. Heart Circ. Physiol. 2018;315(4):H989–H999.
    1. de Gasparo M., Catt K.J., Inagami T., Wright J.W., Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev. 2000;52(3):415–472.
    1. Gaidarov I., Adams J., Frazer J., Anthony T., Chen X., Gatlin J., Semple G., Unett D.J. Angiotensin (1–7) does not interact directly with MAS1, but can potently antagonize signaling from the AT1 receptor. Cell. Signal. 2018;50:9–24.
    1. Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J.C., Turner A.J., Raizada M.K., Grant M.B., Oudit G.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Celebrating the 20th anniversary of the discovery of ACE2. Circ. Res. 2020;126:1456–1474.
    1. Grossman E., Peleg E., Carroll J., Shamiss A., Rosenthal T. Hemodynamic and humoral effects of the angiotensin II antagonist losartan in essential hypertension. Am. J. Hypertension. 1994;12:1041–1044.
    1. Gupte M., Thatcher S.E., Boustany-Kari C.M., Shoemaker R., Yiannikouris F., Zhang X., Karounos M., Cassis L.A. Angiotensin converting enzyme 2 contributes to sex differences in the development of obesity hypertension in C57BL/6 mice. Arterioscler. Thromb. Vasc. Biol. 2012;32:1392–1399.
    1. Hamming I., Timens W., Bulthuis M.L. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203:631–637.
    1. Henry B.M., Vikse J., Benoit S., Favaloro E.J., Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta. 2020;507:167–173.
    1. Hussien N.I., El-Kerdasy H.I., Sorour S.M., Shoman A.A. Chronic oestrogen deficiency induced by ovariectomy may cause lung fibrosis through activation of the renin-angiotensin system in rats. Arch. Physiol. Biochem. 2019;12:1–10.
    1. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., Yang P., Sarao R., Wada T., Leong-Poi H., Crackower M.A., Fukamizu A., Hui C.C., Hein L., Uhlig S., Slutsky A.S., Jiang C., Penninger J.M. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–116.
    1. Jarcho J.A., Ingelfinger J.R., Hamel M.B., D'Agostino R.B., Sr, Harrington D.P. Inhibitors of the renin-angiotensin-aldosterone system and COVID-19. N. Engl. J. Med. 2020 doi: 10.1056/NEJMe2012924.
    1. Keidar S., Gamliel-Lazarovich A., Kaplan M. Mineralocorticoid receptor blocker increases angiotensin- converting enzyme 2 activity in congestive heart failure patients. Circ. Res. 2005;97:946–953.
    1. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan Y., Yang P., Zhang Y., Deng W. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005;11:875–879.
    1. Kuhn M. Molecular physiology of membrane guanylyl cyclase receptors. Physiol. Rev. 2016;96(2):751–804.
    1. Leong D.P., McMurray J.J.V., Joseph P.G., Yusuf S. From ACE inhibitors/ARBs to ARNIs in coronary artery disease and heart failure. J. Am. Coll. Cardiol. 2019;74:683–698.
    1. Li B., Yang J., Zhao F., Zhi L., Wang X., Liu L., Bi Z., Zhao Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020;109:531–538.
    1. Liu J., Ji H., Zheng W. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol. Sex Differ. 2010;1(1):6.
    1. Lynch B.M., Edward P Stern, Voon Ong, Mark Harber, Aine Burns, Christopher P. Denton. UK Scleroderma Study Group (UKSSG) guidelines on the diagnosis and management of scleroderma renal crisis. Clin. Exp. Rheumatol. 2016;34(Suppl 100):106–109.
    1. McMurray J.J.V., Krum H., Abraham W.T., Dickstein K., Køber L.V. Aliskiren, enalapril, or aliskiren and enalapril in heart failure. N. Engl. J. Med. 2016;374:1521–1532.
    1. Meems L.M.G., Andersen I.A., Pan S., Harty G., Chen Y., Zheng Y., Harders G.E., Ichiki T., Heublein D.M., Iyer S.R., Sangaralingham S.J., McCormick D.J., Burnett J.C., Jr. Design, synthesis, and actions of an innovative bispecific designer peptide. Hypertension. 2019;73:900–909.
    1. Messerli F.H., Bangalore S., Bavishi C., Rimoldi S.F. Angiotensin-converting enzyme inhibitors in hypertension: to use or not to use? J. Am. Coll. Cardiol. 2018;71:1474–1482.
    1. Monteil V., Kwon H., Prado P., Hagelkruys A., Wimmer R.A., Stahl M., Leopoldi A., Garreta E., Hurtado del Pozo C., Prosper F., Romero J.P., Wirnsberger G., Zhang H., Slutsky A.S., Conder R., Montserrat N., Mirazimi A., Penninger J.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181:905–913.
    1. Morimoto S., Ichihara A. Management of primary aldosteronism and mineralocorticoid receptor-associated hypertension. Hypertens. Res. 2020 doi: 10.1038/s41440-020-0468-3.
    1. Nakamura K., Koibuchi N., Nishimatsu H., Higashikuni Y., Hirata Y., Kugiyama K., Nagai R., Sata M. Candesartan ameliorates cardiac dysfunction observed in angiotensin-converting enzyme 2-deficient mice. Hypertens. Res. 2008;31:1953–1961.
    1. Nikpouraghdam M., Farahani A.J., Alishiri G.H., Heydari S., Ebrahimnia M., Samadinia H. Epidemiological Characteristics of Coronavirus Disease 2019 (COVID-19) patients in IRAN: a single center study. J. Clin. Virol. 2020;127:104378.
    1. Oakes J.M., Fuchs R.M., Gardner J.D., Lazartigues E., Yue X. Nicotine and the renin-angiotensin system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018;315(5):R895–R906.
    1. Ocaranza M.P., Michea L., Chiong M., Lagos C.F., Lavandero S., Jalil J.E. Recent insights and therapeutic perspectives of angiotensin-(1–9) in the cardiovascular system. Clin. Sci. (Lond.) 2014;127(9):549–557.
    1. Park B.M., Cha S.A., Han B.R., Kim S.H. Angiotensin IV stimulates high atrial stretch-induced ANP secretion via insulin regulated aminopeptidase. Peptides. 2015;63:30–37.
    1. Park B.M., Cha S.A., Lee S.H., Kim S.H. Angiotensin IV protects cardiac reperfusion injury by inhibiting apoptosis and inflammation via AT4R in rats. Peptides. 2016;79:66–74.
    1. Parohan M., Yaghoubi S., Seraji A., Javanbakht M.H., Sarraf P., Djalali M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Aging Male. 2020;8:1–9.
    1. Patel S.K., Velkoska E., Freeman M., Wai B., Lancefield T.F., Burrell L.M. From gene to protein—experimental and clinical studies of ACE2 in blood pressure control and arterial hypertension. Front. Physiol. 2014;5:227.
    1. Ramchand J., Patel S.K., Srivastava P.M., Farouque O., Burrell L.M. Elevated plasma angiotensin converting enzyme 2 activity is an independent predictor of major adverse cardiac events in patients with obstructive coronary artery disease. PLoS ONE. 2018;13(6):e0198144.
    1. Rau J.C., Dodick D.W. Other preventive anti-migraine treatments: ACE inhibitors, ARBs, calcium channel blockers, serotonin antagonists, and NMDA receptor antagonists. Curr. Treat. Options Neurol. 2019;21:17.
    1. Remuzzi A., Remuzzi G. COVID-19 and Italy: what next? Lancet. 2020 S0140-6736(20)30627-9.
    1. Royea J., Zhang L., Tong X.K., Hamel E. Angiotensin IV receptors mediate the cognitive and cerebrovascular benefits of losartan in a mouse model of Alzheimer's disease. J. Neurosci. 2017;37(22):5562–5573.
    1. Sama I.E., Ravera A., Santema B.T., van Goor H., Ter Maaten J.M., Cleland J.G.F., Rienstra M., Friedrich A.W., Samani N.J., Ng L.L., Dickstein K., Lang C.C., Filippatos G., Anker S.D., Ponikowski P., Metra M., van Veldhuisen D.J., Voors A.A. Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors. Eur. Heart J. 2020;41:1810–1817.
    1. Sanchis-Gomar F., Lavie C.J., Perez-Quilis C., Henry B.M., Lippi G. Angiotensin-converting enzyme 2 and antihypertensives (angiotensin receptor blockers and angiotensin-converting enzyme inhibitors) in coronavirus disease mayo. Clin. Proc. 2020 pii: S0025-6196(20)30315-3.
    1. Sandberg K., Ji H. Sex and the renin angiotensin system: implications for gender differences in the progression of kidney disease. Adv. Ren. Replace Ther. 2003;10(1):15–23.
    1. Santos R.A., Simoes e Silva A.C., Maric C., Silva D.M.R., Machado R.P., de Buhr I., Heringer-Walther S., Pinheiro S.V.B., Lopes M.T., Bader M., Mendes E.P. Angiotensin-(1–7) is an endogenous ligand for the G-protein coupled receptor Mas. Proc. Natl. Acad. Sci. U. S. A. 2003;100:8258–8263.
    1. Simonnet A., Chetboun M., Poissy J., Raverdy V., Noulette J., Duhamel A., Labreuche J., Mathieu D., Pattou F., Jourdain M. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring) 2020 doi: 10.1002/oby.22831.
    1. Soler M.J., Barrios C., Oliva R., Batlle D. Pharmacologic modulation of ACE2 expression. Curr. Hypertens. Rep. 2008;10(5):410–414.
    1. Sriram K., Insel P.A. A hypothesis for pathobiology and treatment of COVID-19: the centrality of ACE1/ACE2 imbalance. Br. J. Pharmacol. 2020 doi: 10.1111/bph.15082. (Epub ahead of print)
    1. Sullivan J.C., Rodriguez-Miguelez P., Zimmerman M.A., Harris R.A. Differences in angiotensin(1–7) between men and women. Am. J. Physiol. Heart Circ. Physiol. 2015;308:H1171–H1176.
    1. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18(4):844–847.
    1. Teixeira L.B., Parreiras-e-Silva L.T., Bruder-Nascimento T., Duarte D.A., Simões S.C., Costa R.M., Rodríguez D.Y., Ferreira P.A.B., Silva C.A.A., Abrao E.P., Oliveira E.B., Bouvier M., Tostes R.C., Costa-Neto C.M. Ang-(1–7) is an endogenous β-arrestin-biased agonist of the AT1 receptor with protective action in cardiac hypertrophy. Sci. Rep. 2017;7:11903.
    1. Tipnis S.R., Hooper N.M., Hyde R., Karran E., Christie G., Turner A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 2000;275(43):33238–33243.
    1. Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A., Solomon S.D. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N. Engl. J. Med. 2020;382:1653–1659.
    1. Velagic A., Qin C., Woodman O.L., Horowitz J.D., Ritchie R.H., Kemp-Harper B.K. Nitroxyl: a novel strategy to circumvent diabetes associated impairments in nitric oxide signaling. Front. Pharmacol. 2020;11:727.
    1. Walls A.C., Park Y.-J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glyco-protein. Cell. 2020;181:281–292.
    1. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recog- nition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J. Virol. 2020;94:e00127–e220.
    1. Wang Y., Zhou R., Lu C. Effects of the angiotensin-receptor neprilysin inhibitor on cardiac reverse remodeling: meta-analysis. J. Am. Heart Assoc. 2019;8:e012272.
    1. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S. Cryo-EM structure of the 2019- nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263.
    1. Wright J.R., Elizabeth Tamura-Myers, Wilson Wendy L., Roques Bernard P., Llorens-Cortes Catherine, Speth Robert C., Harding Joseph W. Conversion of brain angiotensin II to angiotensin III is critical for pressor response in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;284:R725–R733.
    1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 Cases from the Chinese center for disease control and prevention. JAMA. 2020 doi: 10.1001/jama.2020.2648.
    1. Wu Z., Hu R., Zhang C., Ren W., Yu A., Zhou X. Elevation of plasma angiotensin II level is a potential pathogenesis for the critically ill COVID-19 patients. Version 2. Crit. Care. 2020;24:290.
    1. Yancy C.W., Jessup M., Bozkurt B. ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;2017(136):e137–e161.
    1. Yatabe J., Yoneda M., Yatabe M.S., Watanabe T., Felder R.A., Jose P.A., Sanada H. Angiotensin III stimulates aldosterone secretion from adrenal gland partially via angiotensin II type 2 receptor but not angiotensin II type 1 receptor. Endocrinology. 2011;152:1582–1588.
    1. Zhang H., Penninger J.M., Li Y., Zhong N., Slutsky A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586–590.

Source: PubMed

3
Subskrybuj