Accelerated biological ageing in HIV-infected individuals in South Africa: a case-control study

Sophia Pathai, Stephen D Lawn, Clare E Gilbert, Dagmara McGuinness, Liane McGlynn, Helen A Weiss, Jennifer Port, Theresa Christ, Karen Barclay, Robin Wood, Linda-Gail Bekker, Paul G Shiels, Sophia Pathai, Stephen D Lawn, Clare E Gilbert, Dagmara McGuinness, Liane McGlynn, Helen A Weiss, Jennifer Port, Theresa Christ, Karen Barclay, Robin Wood, Linda-Gail Bekker, Paul G Shiels

Abstract

Objectives: Little is known about the impact of HIV infection on biological ageing in sub-Saharan Africa. The study aimed to assess biological ageing in South African HIV-infected adults and HIV-seronegative individuals using two validated biomarkers, telomere length and CDKN2A expression (a mediator of cellular senescence).

Design: A case-control study.

Methods: Two hundred and thirty-six HIV-infected adults aged at least 30 years and 250 age and sex frequency matched HIV-seronegative individuals were recruited from clinics in township communities in Cape Town. Biological ageing was evaluated by measurement of telomere length and CDKN2A expression in peripheral blood leukocytes.

Results: The median ages of the HIV-infected and HIV-seronegative participants were 39 and 40 years, respectively. Among HIV-infected participants, 87.1% were receiving antiretroviral therapy (ART), their median CD4⁺ cell count was 468 cells/μl and 84.3% had undetectable viral load. Both biomarkers were validated against chronological age in HIV-seronegative individuals. Telomere length was significantly shorter in HIV-infected individuals than in HIV-seronegative individuals (mean relative T/S ratio ±SE:0.91 ± 0.007 vs. 1.07 ± 0.008, P < 0.0001). CD2NKA expression was higher in HIV-infected participants than in HIV-seronegative individuals (mean expression: 0.45 ± 0.02 vs. 0.36 ± 0.03, P = 0.003). Socioeconomic factors were not associated with biological ageing in HIV-infected participants. However, in participants on ART with undetectable viral load, biomarker levels indicated greater biological ageing in those with lower current CD4⁺ cell counts.

Conclusion: Telomere length and CDKN2A expression were both consistent with increased biological ageing in HIV-infected individuals. Prospective studies of the impact of HIV on biological ageing in sub-Saharan Africa are warranted.

© 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins

Figures

Fig. 1
Fig. 1
Assessment of biomarkers (telomere length and CDKN2A) in peripheral blood leukocytes.

References

    1. Deeks SG. Immune dysfunction, inflammation, and accelerated aging in patients on antiretroviral therapy. Top HIV Med 2009; 17:118–123
    1. Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med 2011; 62:141–155
    1. Baker GT, 3rd, Sprott RL. Biomarkers of aging. Exp Gerontol 1988; 23:223–239
    1. Shiels PG, Mcglynn LM, Macintyre A, Johnson PCD, Batty GD, Burns H, et al. Accelerated telomere attrition is associated with relative household income, diet and inflammation in the pSoBid cohort. PLoS One 2011; 6:e22521.
    1. High KP, Brennan-Ing M, Clifford DB, Cohen MH, Currier J, Deeks SG, et al. HIV and aging: state of knowledge and areas of critical need for research. A report to the NIH Office of AIDS Research by the HIV and Aging Working Group. J Acquir Immune Defic Syndr 2012; 60 Suppl 1:S1–S18
    1. Cassol E, Malfeld S, Mahasha P, van der Merwe S, Cassol S, Seebregts C, et al. Persistent microbial translocation and immune activation in HIV-1–infected South Africans receiving combination antiretroviral therapy. J Infect Dis 2010; 202:723–733
    1. Ledwaba L, Tavel JA, Khabo P, Maja P, Qin J, Sangweni P, et al. Pre-ART levels of inflammation and coagulation markers are strong predictors of death in a South African cohort with advanced HIV disease. PLoS One 2012; 7:e24243.
    1. Justice AC, Braithwaite RS. Lessons learned from the first wave of aging with HIV. AIDS 2012; 26:S11–S18
    1. Mills EJ, Rammohan A, Awofeso N. Ageing faster with AIDS in Africa. Lancet 2011; 377:1131–1133
    1. Effros RB. Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress. Exp Gerontol 2011; 46:135–140
    1. Aviv A. The epidemiology of human telomeres: faults and promises. J Gerontol A Biol Sci Med Sci 2008; 63:979–983
    1. Starr JM, McGurn B, Harris SE, Whalley LJ, Deary IJ, Shiels PG. Association between telomere length and heart disease in a narrow age cohort of older people. Exp Gerontol 2007; 42:571–573
    1. Joosten SA, van Ham V, Nolan CE, Borrias MC, Jardine AG, Shiels PG, et al. Telomere shortening and cellular senescence in a model of chronic renal allograft rejection. Am J Pathol 2003; 162:1305–1312
    1. Yamaguchi T, Takayama Y, Saito M, Ishikawa F, Saneyoshi M. Telomerase-inhibitory effects of the triphosphate derivatives of some biologically active nucleosides. Nucleic Acids Res Suppl 2001; 211–212
    1. Shiels PG. Improving precision in investigating aging: why telomeres can cause problems. J Gerontol A Biol Sci Med Sci 2010; 65:789–791
    1. Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, et al. Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell 2009; 8:439–448
    1. Lawn SD, Myer L, Orrell C, Bekker LG, Wood R. Early mortality among adults accessing a community-based antiretroviral service in South Africa: implications for programme design. AIDS 2005; 19:2141–2148
    1. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res 2002; 30:e47.
    1. Koppelstaetter C, Schratzberger G, Perco P, Hofer J, Mark W, Ollinger R, et al. Markers of cellular senescence in zero hour biopsies predict outcome in renal transplantation. Aging Cell 2008; 7:491–497
    1. Harris SE, Deary IJ, MacIntyre A, Lamb KJ, Radhakrishnan K, Starr JM, et al. The association between telomere length, physical health, cognitive ageing, and mortality in nondemented older people. Neurosci Lett 2006; 406:260–264
    1. Carrero JJ, Stenvinkel P, Fellstrom B, Qureshi AR, Lamb K, Heimburger O, et al. Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. J Intern Med 2008; 263:302–312
    1. McGlynn LM, Stevenson K, Lamb K, Zino S, Brown M, Prina A, et al. Cellular senescence in pretransplant renal biopsies predicts postoperative organ function. Aging Cell 2009; 8:45–51
    1. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25:402–408
    1. Cherkas LF, Aviv A, Valdes AM, Hunkin JL, Gardner JP, Surdulescu GL, et al. The effects of social status on biological aging as measured by white-blood-cell telomere length. Aging Cell 2006; 5:361–365
    1. Pathai S, Gilbert C, Weiss HA, Cook C, Wood R, Bekker LG, et al. Frailty in HIV-infected adults in South Africa. J Acquir Immune Defic Syndr 2013; 62:43–51
    1. Pathai S, Weiss HA, Lawn SD, Peto T, D’Costa LM, Cook C, et al. Retinal arterioles narrow with increasing duration of anti-retroviral therapy in HIV infection: a novel estimator of vascular risk in HIV?. PLoS One 2012; 7:e51405.Epub 2012 Dec 10
    1. Pathai S, Lawn SD, Weiss HA, Cook C, Bekker LG, Gilbert CE. Increased ocular lens density in HIV-infected individuals with low nadir CD4 counts in South Africa: evidence of accelerated aging. J Acquir Immune Defic Syndr 2013; 63:307–314
    1. Pathai S, Lawn SD, Shiels PG, Weiss HA, Cook C, Wood R, Gilbert CE. Corneal endothelial cells provide evidence of accelerated cellular senescence associated with HIV infection: a case-control study. PLoS One 2013; 8:e57422.Epub 2013 Feb 27
    1. Fulop T, Larbi A, Witkowski J, McElhaney J, Loeb M, Mitnitski A, et al. Aging, frailty and age-related diseases. Biogerontology 2010; 11:547–563
    1. Gardner JP, Kimura M, Chai W, Durrani JF, Tchakmakjian L, Cao X, et al. Telomere dynamics in macaques and humans. J Gerontol A Biol Sci Med Sci 2007; 62:367–374
    1. Kimura M, Gazitt Y, Cao X, Zhao X, Lansdorp PM, Aviv A. Synchrony of telomere length among hematopoietic cells. Exp Hematol 2010; 38:854–859
    1. Aubert G, Hills M, Lansdorp PM. Telomere length measurement-caveats and a critical assessment of the available technologies and tools. Mutat Res 2012; 730:59–67
    1. Shiels PG. CDKN2A might be better than telomere length in determining individual health status. BMJ 2012; 344:e1415.
    1. Aviv A, Hunt SC, Lin J, Cao X, Kimura M, Blackburn E. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res 2011; 39:e134.
    1. Aviv A, Valdes AM, Spector TD. Human telomere biology: pitfalls of moving from the laboratory to epidemiology. Int J Epidemiol 2006; 35:1424–1429
    1. Leeansyah E, Cameron PU, Solomon A, Tennakoon S, Velayudham P, Gouillou M, et al. Inhibition of telomerase activity by human immunodeficiency virus (HIV) nucleos(t)ide reverse transcriptase inhibitors: a potential factor contributing to HIV-associated accelerated aging. J Infect Dis 2013; 207:1157–1165
    1. Malan-Muller S, Hemmings SM, Spies G, Kidd M, Fennema-Notestine C, Seedat S. Shorter telomere length: a potential susceptibility factor for HIV-associated neurocognitive impairments in South African woman. PLoS One 2013; 8:e58351.
    1. Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 2000; 1:72–76
    1. Liu Y, Johnson SM, Fedoriw Y, Rogers AB, Yuan H, Krishnamurthy J, et al. Expression of p16(INK4a) prevents cancer and promotes aging in lymphocytes. Blood 2011; 117:3257–3267
    1. Nelson JA, Krishnamurthy J, Menezes P, Liu Y, Hudgens MG, Sharpless NE, et al. Expression of p16(INK4a) as a biomarker of T-cell aging in HIV-infected patients prior to and during antiretroviral therapy. Aging Cell 2012; 11:916–918
    1. Peng Y, Mian IS, Lue NF. Analysis of telomerase processivity: mechanistic similarity to HIV-1 reverse transcriptase and role in telomere maintenance. Mol Cell 2001; 7:1201–1211
    1. Ballon G, Ometto L, Righetti E, Cattelan AM, Masiero S, Zanchetta M, et al. Human immunodeficiency virus type 1 modulates telomerase activity in peripheral blood lymphocytes. J Infect Dis 2001; 183:417–424
    1. Wolthers KC, Otto SA, Wisman GB, Fleury S, Reiss P, ten Kate RW, et al. Normal T-cell telomerase activity and upregulation in human immunodeficiency virus-1 infection. Blood 1999; 93:1011–1019
    1. Der G, Batty GD, Benzeval M, Deary IJ, Green MJ, McGlynn L, et al. Is telomere length a biomarker for aging: cross-sectional evidence from the west of Scotland?. PLoS One 2012; 7:e45166.
    1. Justice AC, Freiberg MS, Tracy R, Kuller L, Tate JP, Goetz MB, et al. Does an index composed of clinical data reflect effects of inflammation, coagulation, and monocyte activation on mortality among those aging with HIV?. Clin Infect Dis 2012; 54:984–994
    1. Martin J, Volberding P. HIV and premature aging: A field still in its infancy. Ann Intern Med 2010; 153:477–479
    1. Nglazi MD, Lawn SD, Kaplan R, Kranzer K, Orrell C, Wood R, et al. Changes in programmatic outcomes during 7 years of scale-up at a community-based antiretroviral treatment service in South Africa. J Acquir Immune Defic Syndr 2011; 56:e1–e8
    1. Rasmussen LD, Engsig FN, Christensen H, Gerstoft J, Kronborg G, Pedersen C, et al. Risk of cerebrovascular events in persons with and without HIV: a Danish nationwide population-based cohort study. AIDS 2011; 25:1637–1646

Source: PubMed

3
Subskrybuj