The association of dietary phosphorus with blood pressure: results from a secondary analysis of the PREMIER trial

Scott T McClure, Casey M Rebholz, Diane C Mitchell, Elizabeth Selvin, Lawrence J Appel, Scott T McClure, Casey M Rebholz, Diane C Mitchell, Elizabeth Selvin, Lawrence J Appel

Abstract

Inconsistent findings exist for the association between dietary phosphorus intake and blood pressure (BP). We examined the longitudinal association between urinary excretion and dietary intake of phosphorus (total, plant, animal, and added) with BP. This is a secondary analysis of PREMIER, a randomized behavioral intervention study in adults (25-79 years) with BP, measured at 6 months, as the primary outcome. We classified total phosphorus intake from dietary recalls into plant, animal, and added phosphorus. We modeled 6-month change of phosphorus intake (from 24 h dietary recalls, N = 622) and excretion (from 24 h urine collection, N = 564) on BP, using linear regression crude and adjusted for intervention, age, race, sex, income, education, study site, and change in energy intake (kcal/day), sodium intake (mg/day), fitness (heart rate, bpm), and DASH diet index. Baseline phosphorus intake was 1154 mg/day (95% CI 1126, 1182) with 38%, 53%, and 10% from plant, animal, and added phosphorus, respectively. Total phosphorus intake was not associated with significant changes in BP. Increased urinary phosphorus excretion was associated with a significant increase in DBP [0.14 mmHg/100 mg (0.01, 0.28), adjusted]. In several analyses, phosphorus type (plant, animal, or added) significantly modified the association between phosphorus intake and BP. For example, added phosphorus (but not plant or animal) was associated with increases in SBP and DBP, 1.24 mmHg/100 mg (0.36, 2.12) and 0.83 mmHg/100 mg (0.22, 1.44), respectively, crude. These findings suggest that the type of phosphorus may modify the association between phosphorus intake and BP. Trial registration NCT00000616 (clinicaltrials.gov).

Conflict of interest statement

Conflicts of Interest: NONE

Figures

Figure.
Figure.
24h dietary recall interviews, urinary phosphorus excretion from a single 24h urine collection, and blood pressure from three to four pairs of measurements at each time point. r = Pearson correlation coefficient. Trend line and β’s from univariate linear regression. β’s represent change in blood pressure (mmHg) per 100mg/d increase in phosphorus. *significantly different than zero, p

References

    1. Alonso A, Nettleton JA, Ix JH, De Boer IH, Folsom AR, Bidulescu A, et al. Dietary phosphorus, blood pressure, and incidence of hypertension in the atherosclerosis risk in communities study and the multi-ethnic study of atherosclerosis. Hypertension. 2010;55(3):776–784. doi:10.1161/HYPERTENSIONAHA.109.143461
    1. Elliott P, Kesteloot H, Appel LJ, Dyer AR, Ueshima H, Chan Q, et al. Dietary phosphorus and blood pressure: International study of macro- and micro-nutrients and blood pressure. Hypertension. 2008;51(3):669–675. doi:10.1161/HYPERTENSIONAHA.107.103747
    1. Olivo RE, Hale SL, Diamantidis CJ, Bhavsar NA, Tyson CC, Tucker KL, et al. Dietary Phosphorus and Ambulatory Blood Pressure in African Americans: The Jackson Heart Study. Am J Hypertens. August 2018. doi:10.1093/ajh/hpy126
    1. McClure ST, Rebholz CM, Medabalimi S, Hu EA, Xu Z, Selvin E, Appel LJ. Dietary phosphorus intake and blood pressure in adults: a systematic review of randomized trials and prospective observational studies. The American journal of clinical nutrition. 2019. April 26;109(5):1264–72.
    1. Palomino HL, Rifkin DE, Anderson C, Criqui MH, Whooley MA, Ix JH. 24-Hour Urine Phosphorus Excretion and Mortality and Cardiovascular Events. Clin J Am Soc Nephrol. 2013;8(7):1202–1210. doi:10.2215/CJN.11181012
    1. Mohammad J, Scanni R, Bestmann L, Hulter HN, Krapf R. A Controlled Increase in Dietary Phosphate Elevates BP in Healthy Human Subjects. J Am Soc Nephrol. 2018;29(8):2089–2098. doi:10.1681/ASN.2017121254
    1. Yamamoto KT, Robinson-Cohen C, de Oliveira MC, Kostina A, Nettleton J a, Ix JH, et al. Dietary phosphorus is associated with greater left ventricular mass. Kidney Int. 2013;83(4):707–714. doi:10.1038/ki.2012.303
    1. Nishi T, Shuto E, Ogawa M, Ohya M, Nakanishi M, Masuda M, et al. Excessive dietary phosphorus intake impairs endothelial function in young healthy men: a time- and dose-dependent study. J Med Invest. 2015;62(3–4):167–172. doi:10.2152/jmi.62.167
    1. Shuto E, Taketani Y, Tanaka R, Harada N, Isshiki M, Sato M, et al. Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol. 2009;20(7):1504–1512. doi:10.1681/ASN.2008101106
    1. Itkonen ST, Karp HJ, Kemi VE, Kokkonen EM, Saarnio EM, Pekkinen MH, et al. Associations among total and food additive phosphorus intake and carotid intima-media thickness--a cross-sectional study in a middle-aged population in Southern Finland. Nutr J. 2013;12(PG-94):94. doi:10.1186/1475-2891-12-94
    1. Chang AR, Lazo M, Appel LJ, Gutiérrez OM, Grams ME, Chang AR, et al. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III. Am J Clin Nutr. 2014;99(2):320–327. doi:10.3945/ajcn.113.073148
    1. Gutiérrez OM, Luzuriaga-mcpherson A, Lin Y, Gilbert LC, Ha S, Beck GR. Impact of Phosphorus-Based Food Additives on Bone and Mineral Metabolism. 2015;100(November):4264–4271. doi:10.1210/jc.2015-2279
    1. Karp H, Ekholm P, Kemi V, Hirvonen T, Lamberg-Allardt C. Differences among total and in vitro digestible phosphorus content of meat and milk products. J Ren Nutr. 2012;22(3):344–349. doi:10.1053/j.jrn.2011.07.004
    1. Ravindran V, Ravindran G, Sivalogan S. Total and phytate phosphorus contents of various foods and feedstuffs of plant origin. Food Chem. 1994;50(2):133–136. doi:10.1016/0308-8146(94)90109-0
    1. Lee JW, Underwood EJ. The total phosphorus, phytate phosphorus and inorganic phosphorus of bread and the destruction of phytic acid in bread making. Aust J Exp Biol Med Sci. 1949;27(Pt 1):99–104. doi:10.1038/icb.1948.42
    1. Karp H, Ekholm P, Kemi V, Itkonen S, Hirvonen T, Närkki S, et al. Differences among total and in vitro digestible phosphorus content of plant foods and beverages. J Ren Nutr. 2012;22(4):416–422. doi:10.1053/j.jrn.2011.04.004
    1. Lampila LE. Applications and functions of food-grade phosphates. Ann N Y Acad Sci. 2013;1301(1):37–44. doi:10.1111/nyas.12230
    1. Svetkey LP, Harsha DW, Vollmer WM, Stevens VJ, Obarzanek E, Elmer PJ, et al. Premier: a clinical trial of comprehensive lifestyle modification for blood pressure control: rationale, design and baseline characteristics. Ann Epidemiol. 2003;13(6):462–471. doi:10.1016/S1047-2797(03)00006-1
    1. Appel LJ, Champagne CM, Harsha DW, Cooper LS, Obarzanek E, Elmer PJ, et al. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. JAMA. 2003;289(16):2083–2093. doi:10.1001/jama.289.16.2083
    1. US Department of Agriculture, Agricultural Research Service NDL. USDA Branded Food Products Database. .
    1. Lin P-H, Wang Y, Grambow SC, Goggins W, Almirall D. Dietary Saturated Fat Intake Is Negatively Associated With Weight Maintenance Among the PREMIER Participants. Obesity. 2012;20(3):571–575. doi:10.1038/oby.2011.17
    1. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65(4 Suppl):1220S–1228S; discussion 1229S-1231S. doi:10.1093/ajcn/65.4.1220S
    1. Fung TT, Chiuve SE, McCullough ML, Rexrode KM, Logroscino G, Hu FB. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008;168(7):713–720. doi:10.1001/archinte.168.7.713
    1. Yamamoto KT, Robinson-Cohen C, de Oliveira MC, Kostina A, Nettleton JA, Ix JH, et al. Dietary phosphorus is associated with greater left ventricular mass. Kidney Int. 2013;83(4):707–714. doi:10.1038/ki.2012.303
    1. McClure ST, Rebholz CM, Phillips KM, Champagne CM, Selvin E, Appel LJ. The Percentage of Dietary Phosphorus Excreted in the Urine Varies by Dietary Pattern in a Randomized Feeding Study in Adults. The Journal of nutrition. 2019. April 29;149(5):816–23.
    1. Morimoto Y, Sakuma M, Ohta H, Suzuki A, Matsushita A, Umeda M, et al. Estimate of dietary phosphorus intake using 24-h urine collection. J Clin Biochem Nutr. 2014;55(1):62–66. doi:10.3164/jcbn.14-15
    1. Sakuma M, Morimoto Y, Suzuki Y, Suzuki A, Noda S, Nishino K, et al. Availability of 24-h urine collection method on dietary phosphorus intake estimation. J Clin Biochem Nutr. 2017;60(2):125–129. doi:10.3164/jcbn.16-50
    1. Shinozaki N, Murakami K, Asakura K, Uechi K, Kobayashi S, Masayasu S, et al. Dietary phosphorus intake estimated by 4-day dietary records and two 24-hour urine collections and their associated factors in Japanese adults. Eur J Clin Nutr. 2018;72(4):517–525. doi:10.1038/s41430-018-0114-1

Source: PubMed

3
Subskrybuj