Volume, distribution and acidity of gastric secretion on and off proton pump inhibitor treatment: a randomized double-blind controlled study in patients with gastro-esophageal reflux disease (GERD) and healthy subjects

Andreas Steingoetter, Matthias Sauter, Jelena Curcic, Dian Liu, Dieter Menne, Michael Fried, Mark Fox, Werner Schwizer, Andreas Steingoetter, Matthias Sauter, Jelena Curcic, Dian Liu, Dieter Menne, Michael Fried, Mark Fox, Werner Schwizer

Abstract

Background: Postprandial accumulation of gastric secretions in the proximal stomach above the meal adjacent to the esophagogastric junction (EGJ), referred to as the 'acid pocket', has been proposed as a pathophysiological factor in gastro-esophageal reflux disease (GERD) and as a target for GERD treatment. This study assessed the effect of proton pump inhibitor (PPI) therapy on the volume, distribution and acidity of gastric secretions in GERD and healthy subjects (HS).

Methods: A randomized, double blind, cross-over study in 12 HS and 12 GERD patients pre-treated with 40 mg pantoprazole (PPI) or placebo b.i.d. was performed. Postprandial secretion volume (SV), formation of a secretion layer and contact between the layer and the EGJ were quantified by Magnetic Resonance Imaging (MRI). Multi-channel pH-monitoring assessed intragastric pH.

Results: A distinct layer of undiluted acid secretion was present on top of gastric contents in almost all participants on and off high-dose acid suppression. PPI reduced SV (193 ml to 100 ml, in HS, 227 ml to 94 ml in GERD; p < 0.01) and thickness of the acid layer (26 mm to 7 mm, 36 mm to 9 mm respectively, p < 0.01). No differences in secretion volume or layer thickness were observed between groups; however, off treatment, contact time between the secretion layer and EGJ was 2.6 times longer in GERD compared to HS (p = 0.012). This was not the case on PPI.

Conclusions: MRI can visualize and quantify the volume and distribution dynamics of gastric secretions that form a layer in the proximal stomach after ingestion of a liquid meal. The secretion volume and the secretion layer on top of gastric contents is similar in GERD patients and HS; however contact between the layer of undiluted secretion and the EGJ is prolonged in patients. High dose PPI reduced secretion volume by about 50% and reduced contact time between secretion and EGJ towards normal levels.

Trial registration: NCT01212614.

Figures

Fig. 1
Fig. 1
Flow chart of the double blind, crossover placebo controlled study
Fig. 2
Fig. 2
Definition of the EGJ position and 3D reconstruction of gastric content. a Transverse abdominal MR images at time points t = 10 and 80 min. EGJ is marked by a white arrow. Stomach contours are depicted as yellow lines. b The 3D reconstructed contours of stomach (black closed lines) and esophagus (dark blue closed lines) together with the color-coded gastric content (blue to red) of the same subject at the same time points. Gastric content was color-coded to highlight the formation of the secretion layer, here depicted in red. A non-linear color-coding of the contrast optimized grayscale values in the MR images was applied. The location of the EGJ is marked by the black dot at the end of the esophagus
Fig. 3
Fig. 3
Schematic of post-processing steps for the quantification of acid layer thickness and volume from MR images. Gastric secretion accumulated predominantly on the meal surface and a secretion concentration gradient was observed from the surface of the meal into the test meal along the direction of gravity (i.e. the right side of the subject lying in the right lateral position) [10, 13]. The x-axis of the image data was set anti-parallel to the direction of gravity. Gastric content was sliced along the x-axis using a slice thickness of 1 mm and corresponding %secretion values were averaged along the other two Cartesian coordinates. This resulted in a 1D projection of mean %secretion values along the x-axis that was computed for each gastric secretion scan and stacked together over time to allow visualization of the formation of the gastric secretion layer (‘layer-graphs’). In the layer-graphs, the layer thickness was defined as the distance from the meal surface to the x coordinates having a threshold value of ≥70 % secretion. Layer volume (LV) was calculated by summing all pixels above this threshold
Fig. 4
Fig. 4
Grouped meal and secretion volume curves. Meal Volume (MV) and Secretion Volume (SV) dynamics over 120 min for GERD patients and Healthy Subjects (HS), under placebo (black dots/lines) and PPI (grey triangles/lines). The approximately linear emptying pattern of the test meal is typical for a high calorie, viscous liquid meal
Fig. 5
Fig. 5
Formation of individual secretion layers. Layer thickness over time is depicted for all healthy subjects (HS) and GERD patients under placebo (black dots/lines) and PPI therapy (grey triangles/lines)
Fig. 6
Fig. 6
Correlation of layer and secretion volume under placebo and PPI therapy. GERD and HS data are depicted as triangles and circles, respectively; placebo volumes (black), PPI volumes (grey). The offset in the correlation indicates that layer formation started when approximately 50 ml secretion was present in the stomach. For placebo, the regression coefficient was R2 = 0.7 with regression slope and offset of 1.04 ± 0.04 and -52 ± 7 ml, respectively. On pantoprazole therapy, the regression coefficient was reduced to R2 = 0.3 with regression slope and offset of 0.56 ± 0.06 and offset -18 ± 5, respectively
Fig. 7
Fig. 7
Layer graphs including EGJ position and time to Layer formation. Layer graphs of a healthy subject (left) and a GERD patient (right) under placebo (top) and PPI therapy (bottom). The vertical axis represents the MR image x-axis, which is aligned along the direction of gravity. The colours code the average %secretion. The threshold level of the layer (i.e. ≥70 % secretion) and the position of the EGJ are indicated as white dashed and black dotted line, respectively

References

    1. Beaumont H, Bennink RJ, de Jong J, Boeckxstaens GE. The position of the acid pocket as a major risk factor for acidic reflux in healthy subjects and patients with GORD. Gut. 2010;59(4):441–51. doi: 10.1136/gut.2009.178061.
    1. Clarke AT, Wirz AA, Manning JJ, Ballantyne SA, Alcorn DJ, McColl KE. Severe reflux disease is associated with an enlarged unbuffered proximal gastric acid pocket. Gut. 2008;57(3):292–7. doi: 10.1136/gut.2006.109421.
    1. Fletcher J, Wirz A, Young J, Vallance R, McColl KE. Unbuffered highly acidic gastric juice exists at the gastroesophageal junction after a meal. Gastroenterology. 2001;121(4):775–83. doi: 10.1053/gast.2001.27997.
    1. Kahrilas PJ, McColl K, Fox M, O'Rourke L, Sifrim D, Smout AJ, et al. The acid pocket: a target for treatment in reflux disease? Am J Gastroenterol. 2013;108(7):1058–64. doi: 10.1038/ajg.2013.132.
    1. De Ruigh A, Roman S, Chen J, Pandolfino JE, Kahrilas PJ. Gaviscon Double Action Liquid (antacid & alginate) is more effective than antacid in controlling post-prandial oesophageal acid exposure in GERD patients: a double-blind crossover study. Aliment Pharmacol Ther. 2014;40(5):531–7.
    1. Kwiatek MA, Roman S, Fareeduddin A, Pandolfino JE, Kahrilas PJ. An alginate-antacid formulation (Gaviscon Double Action Liquid) can eliminate or displace the postprandial ‘acid pocket’ in symptomatic GERD patients. Aliment Pharmacol Ther. 2011;34(1):59–66. doi: 10.1111/j.1365-2036.2011.04678.x.
    1. Rohof WO, Bennink RJ, de Ruigh AA, Hirsch DP, Zwinderman AH, Boeckxstaens GE. Effect of azithromycin on acid reflux, hiatus hernia and proximal acid pocket in the postprandial period. Gut. 2012;61(12):1670–7. doi: 10.1136/gutjnl-2011-300926.
    1. Scarpellini E, Boecxstaens V, Farre R, Bisschops R, Dewulf D, Gasbarrini A, et al. Effect of baclofen on the acid pocket at the gastroesophageal junction. Dis Esophagus. 2015;28(5):488-95.
    1. Thomas E, Wade A, Crawford G, Jenner B, Levinson N, Wilkinson J. Randomised clinical trial: relief of upper gastrointestinal symptoms by an acid pocket-targeting alginate-antacid (Gaviscon Double Action) - a double-blind, placebo-controlled, pilot study in gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2014;39(6):595–602. doi: 10.1111/apt.12640.
    1. Goetze O, Treier R, Fox M, Steingoetter A, Fried M, Boesiger P, et al. The effect of gastric secretion on gastric physiology and emptying in the fasted and fed state assessed by magnetic resonance imaging. Neurogastroenterol Motil. 2009;21(7):725–e742. doi: 10.1111/j.1365-2982.2009.01293.x.
    1. Kuiken S, Van Den Elzen B, Tytgat G, Bennink R, Boeckxstaens G. Evidence for pooling of gastric secretions in the proximal stomach in humans using single photon computed tomography. Gastroenterology. 2002;123(6):2157–8. doi: 10.1053/gast.2002.37299.
    1. Rohof WO, Bennink RJ, Boeckxstaens GE. Proton pump inhibitors reduce the size and acidity of the acid pocket in the stomach. Clin Gastroenterol Hepatol. 2014;12(7):1101–7. doi: 10.1016/j.cgh.2014.04.003.
    1. Sauter M, Curcic J, Menne D, Goetze O, Fried M, Schwizer W, et al. Measuring the interaction of meal and gastric secretion: a combined quantitative magnetic resonance imaging and pharmacokinetic modeling approach. Neurogastroenterol Motil. 2012;24(7):632–8. doi: 10.1111/j.1365-2982.2012.01916.x.
    1. Babaei A, Bhargava V, Aalam S, Scadeng M, Mittal RK. Effect of proton pump inhibition on the gastric volume: assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2009;29(8):863–70. doi: 10.1111/j.1365-2036.2009.03947.x.
    1. Schwizer W, Menne D, Schütze K, Vieth M, Goergens R, Malfertheiner P, et al. The effect of Helicobacter pylori infection and eradication in patients with gastro-oesophageal reflux disease: a parallel-group, double-blind, placebo-controlled multicentre study. United European Gastroenterol J. 2013;1(4):226–35. doi: 10.1177/2050640613484020.
    1. Schwizer W, Thumshirn M, Dent J, Guldenschuh I, Menne D, Cathomas G, et al. Helicobacter pylori and symptomatic relapse of gastro-oesophageal reflux disease: a randomised controlled trial. Lancet. 2001;357(9270):1738–42. doi: 10.1016/S0140-6736(00)04894-7.
    1. Treier R, Steingoetter A, Goetze O, Fox M, Fried M, Schwizer W, et al. Fast and optimized T1 mapping technique for the noninvasive quantification of gastric secretion. J Magn Reson Imaging. 2008;28(1):96–102. doi: 10.1002/jmri.21400.
    1. Fruehauf H, Menne D, Kwiatek MA, Forras-Kaufman Z, Kaufman E, Goetze O, et al. Inter-observer reproducibility and analysis of gastric volume measurements and gastric emptying assessed with magnetic resonance imaging. Neurogastroenterol Motil. 2011;23(9):854–61. doi: 10.1111/j.1365-2982.2011.01743.x.
    1. Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. New York: Springer; 2000.
    1. Pandolfino JE, Zhang Q, Ghosh SK, Post J, Kwiatek M, Kahrilas PJ. Acidity surrounding the squamocolumnar junction in GERD patients: “acid pocket” versus “acid film”. Am J Gastroenterol. 2007;102(12):2633–41. doi: 10.1111/j.1572-0241.2007.01488.x.
    1. Vo L, Simonian HP, Doma S, Fisher RS, Parkman HP. The effect of rabeprazole on regional gastric acidity and the postprandial cardia/gastro-oesophageal junction acid layer in normal subjects: a randomized, double-blind, placebo-controlled study. Aliment Pharmacol Ther. 2005;21(11):1321–30. doi: 10.1111/j.1365-2036.2005.02489.x.
    1. Kaufman E, Curcic J, Pal A, Forras-Kaufman Z, Treier R, Schwizer W, et al. The Structure and Function of the Gastro-Esophageal Junction in Health and Reflux Disease Assessed By Magnetic Resonance Imaging and High Resolution Manometry. Gastroenterology. 2009;136(5):A17–7.
    1. Roy S, Fox MR, Curcic J, Schwizer W, Pal A. The gastro-esophageal reflux barrier: biophysical analysis on 3D models of anatomy from magnetic resonance imaging. Neurogastroenterol Motil. 2012;24(7):616–e269. doi: 10.1111/j.1365-2982.2012.01909.x.
    1. Curcic J, Roy S, Schwizer A, Kaufman E, Forras-Kaufman ZA, Menne D, et al. Abnormal Structure and Function of the Esophagogastric Junction and Proximal Stomach in Gastroesophageal Reflux Disease. Am J Gastroenterol. 2014;109(5):658–67. doi: 10.1038/ajg.2014.25.
    1. Curcic J, Schwizer A, Kaufman E, Forras-Kaufman Z, Banerjee S, Pal A, et al. Effects of baclofen on the functional anatomy of the oesophago-gastric junction and proximal stomach in healthy volunteers and patients with GERD assessed by magnetic resonance imaging and high-resolution manometry: a randomised controlled double-blind study. Aliment Pharm Ther. 2014;40(10):1230–40. doi: 10.1111/apt.12956.
    1. Pauwels A, Altan E, Tack J. The gastric accommodation response to meal intake determines the occurrence of transient lower esophageal sphincter relaxations and reflux events in patients with gastro-esophageal reflux disease. Neurogastroenterol Motil. 2014;26(4):581–8. doi: 10.1111/nmo.12305.
    1. Rohof WO, Bennink RJ, de Jonge H, Boeckxstaens GE. Increased proximal reflux in a hypersensitive esophagus might explain symptoms resistant to proton pump inhibitors in patients with gastroesophageal reflux disease. Clin Gastroenterol Hepatol. 2014;12(10):1647-55.
    1. Sweis R, Kaufman E, Anggiansah A, Wong T, Dettmar P, Fried M, et al. Post-prandial reflux suppression by a raft-forming alginate (Gaviscon Advance) compared to a simple antacid documented by magnetic resonance imaging and pH-impedance monitoring: mechanistic assessment in healthy volunteers and randomised, controlled, double-blind study in reflux patients. Aliment Pharmacol Ther. 2013;37(11):1093–102. doi: 10.1111/apt.12318.
    1. Curcic J, Sauter M, Schwizer W, Fried M, Boesiger P, Steingoetter A. Validation of a golden angle radial sequence (GOLD) for abdominal T1 mapping during free breathing: Demonstrating clinical feasibility for quantifying gastric secretion and emptying. J Magn Reson Imaging. 2015;41(1):157-64.
    1. Treier R, Steingoetter A, Fried M, Schwizer W, Boesiger P. Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast-enhanced abdominal MRI. Magn Reson Med. 2007;57(3):568–76. doi: 10.1002/mrm.21177.
    1. Steingoetter A, Fox M, Treier R, Weishaupt D, Marincek B, Boesiger P, et al. Effects of posture on the physiology of gastric emptying: a magnetic resonance imaging study. Scand J Gastroenterol. 2006;41(10):1155–64. doi: 10.1080/00365520600610451.
    1. Treier R, Steingoetter A, Weishaupt D, Goetze O, Boesiger P, Fried M, et al. Gastric motor function and emptying in the right decubitus and seated body position as assessed by magnetic resonance imaging. J Magn Reson Imaging. 2006;23(3):331–8. doi: 10.1002/jmri.20507.
    1. Fox M, Barr C, Nolan S, Lomer M, Anggiansah A, Wong T. The effects of dietary fat and calorie density on esophageal acid exposure and reflux symptoms. Clin Gastroenterol Hepatol. 2007;5(4):439–44. doi: 10.1016/j.cgh.2006.12.013.
    1. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, et al. A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct. 2014;5(6):1113–24. doi: 10.1039/c3fo60702j.

Source: PubMed

3
Subskrybuj