A new human challenge model for testing heat-stable toxin-based vaccine candidates for enterotoxigenic Escherichia coli diarrhea - dose optimization, clinical outcomes, and CD4+ T cell responses

Sunniva Todnem Sakkestad, Hans Steinsland, Steinar Skrede, Kristine Lillebø, Dag Harald Skutlaberg, Anne Berit Guttormsen, Anton Zavialov, Sari Paavilainen, Hanne Søyland, Marianne Sævik, Astrid Rykkje Heien, Marit Gjerde Tellevik, Eileen Barry, Nina Langeland, Halvor Sommerfelt, Kurt Hanevik, Sunniva Todnem Sakkestad, Hans Steinsland, Steinar Skrede, Kristine Lillebø, Dag Harald Skutlaberg, Anne Berit Guttormsen, Anton Zavialov, Sari Paavilainen, Hanne Søyland, Marianne Sævik, Astrid Rykkje Heien, Marit Gjerde Tellevik, Eileen Barry, Nina Langeland, Halvor Sommerfelt, Kurt Hanevik

Abstract

ClinicalTrials.gov ClinicalTrials.gov, Project ID: NCT02870751.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Flow diagram.
Fig 1. Flow diagram.
CONSORT flow diagram as applies for human challenge studies. In total 22 adult volunteers were assessed for eligibility, and 1 volunteer did not meet the inclusion criteria, resulting in a total of 21 volunteers allocated to experimental infection with different doses of ETEC: 1×106 (n = 3), 1×107 (n = 3), 1×108 (n = 3), 1×109 (n = 3) and 1×1010 (n = 9) CFU. Clinical data were analyzed for all volunteers, as well as the immunological data on day 10 and day 28 after experimental infection. There were none lost to follow-up, however, immunological data from 6 months, 1 year and 2 years after experimental infection were obtained from subgroups of the study population due to limited availability of personnel to perform the analyses.
Fig 2. Antigen-specific CD4+ T cell responses…
Fig 2. Antigen-specific CD4+ T cell responses after infection with STh-only ETEC strain TW10722.
The graph displays the mean percentage of CD4+ T cells that co-express CS25 and CD134 for each sampling timepoint and virulence factor after incubating whole blood with ETEC proteins CS6A, CS5 and YghJ. Grey circles represent volunteers in the 1×106 to 1×109 CFU dose groups, red circles represent volunteers in the 1×1010 CFU dose group. Error bars represent the 95% confidence intervals. Due to limited availibility of purified CS6 antigen in the initial parts of the study, CS6-specific CD4+ T cell responses were only measured for a subgroup of the volunteers (n = 12). Also, due to the stepwise inclusion of volunteers to the study, the long-term follow-up timepoints of each volunteer varied according to time of enrollment, with the first subgroup of volunteers (n = 9) having their follow-up at 2 years, while the last subgroup of volunteers (n = 12) had their follow-up at 6 months and 1 year after experimental infection. Abbreviations: d0: day 0, d10: day 10, d28: day 28, m6: 6 months, y1: 1 year, y2: 2 years, N: Number of volunteers, Stim: Antigen used for stimulation. a Antigen preparation differed from other timepoints.
Fig 3. Antigen-specific serum IgG and IgA…
Fig 3. Antigen-specific serum IgG and IgA responses after infection with STh-only ETEC strain TW10722.
The graphs display the median fluorescence intensity (MFI) value of CS5-, CS6AB-, and YghJ-specific IgG and IgA at each sampling time point for each volunteer. Grey circles represent volunteers in the 1×106 to 1×109 CFU dose groups, red circles represent volunteers in the 1×1010 CFU dose group. Error bars represent the 95% confidence intervals. Number of volunteers indicated in parentheses. Abbreviations: d0: day 0, d10: day 10, d28: day 28, m6: 6 months, y2: 2 years.

References

    1. Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A, Atherly DE, et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990–2016. Lancet Infect Dis. 2018;18(11):1229–40. Epub 2018/09/30. 10.1016/S1473-3099(18)30475-4
    1. Jiang ZD, DuPont HL. Etiology of travellers' diarrhea. J Travel Med. 2017;24(suppl_1):S13–S6. Epub 2017/05/19. 10.1093/jtm/tax003 .
    1. Rogawski ET, Liu J, Platts-Mills JA, Kabir F, Lertsethtakarn P, Siguas M, et al. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob Health. 2018;6(12):e1319–e28. Epub 2018/10/06. 10.1016/S2214-109X(18)30351-6
    1. Investigators M-EN. Early childhood cognitive development is affected by interactions among illness, diet, enteropathogens and the home environment: findings from the MAL-ED birth cohort study. BMJ Glob Health. 2018;3(4):e000752 Epub 2018/07/31. 10.1136/bmjgh-2018-000752
    1. Walker RI. An assessment of enterotoxigenic Escherichia coli and Shigella vaccine candidates for infants and children. Vaccine. 2015;33(8):954–65. 10.1016/j.vaccine.2014.11.049 .
    1. Akhtar M, Chowdhury MI, Bhuiyan TR, Kaim J, Ahmed T, Rafique TA, et al. Evaluation of the safety and immunogenicity of the oral inactivated multivalent enterotoxigenic Escherichia coli vaccine ETVAX in Bangladeshi adults in a double-blind, randomized, placebo-controlled Phase I trial using electrochemiluminescence and ELISA assays for immunogenicity analyses. Vaccine. 2018. Epub 2018/11/27. 10.1016/j.vaccine.2018.11.040 .
    1. Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinsland H. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect. 2010;12(2):89–98. Epub 2009/11/04. 10.1016/j.micinf.2009.10.002 .
    1. Taxt A, Aasland R, Sommerfelt H, Nataro J, Puntervoll P. Heat-stable enterotoxin of enterotoxigenic Escherichia coli as a vaccine target. Infect Immun. 2010;78(5):1824–31. Epub 2010/03/17. 10.1128/IAI.01397-09
    1. Wang H, Zhong Z, Luo Y, Cox E, Devriendt B. Heat-Stable Enterotoxins of Enterotoxigenic Escherichia coli and Their Impact on Host Immunity. Toxins (Basel). 2019;11(1). Epub 2019/01/11. 10.3390/toxins11010024
    1. Vidal RM, Muhsen K, Tennant SM, Svennerholm AM, Sow SO, Sur D, et al. Colonization factors among enterotoxigenic Escherichia coli isolates from children with moderate-to-severe diarrhea and from matched controls in the Global Enteric Multicenter Study (GEMS). PLoS Negl Trop Dis. 2019;13(1):e0007037 Epub 2019/01/05. 10.1371/journal.pntd.0007037 .
    1. Steinsland H, Valentiner-Branth P, Perch M, Dias F, Fischer TK, Aaby P, et al. Enterotoxigenic Escherichia coli infections and diarrhea in a cohort of young children in Guinea-Bissau. J Infect Dis. 2002;186(12):1740–7. Epub 2002/11/26. 10.1086/345817 .
    1. Zegeye ED, Govasli ML, Sommerfelt H, Puntervoll P. Development of an enterotoxigenic Escherichia coli vaccine based on the heat-stable toxin. Hum Vaccin Immunother. 2018:1–10. Epub 2018/08/08. 10.1080/21645515.2018.1420843 .
    1. Govasli ML, Diaz Y, Zegeye ED, Darbakk C, Taxt AM, Puntervoll P. Purification and Characterization of Native and Vaccine Candidate Mutant Enterotoxigenic Escherichia coli Heat-Stable Toxins. Toxins (Basel). 2018;10(7). Epub 2018/07/05. 10.3390/toxins10070274
    1. Duan Q, Lu T, Garcia C, Yanez C, Nandre RM, Sack DA, et al. Co-administered Tag-Less Toxoid Fusion 3xSTaN12S-mnLTR192G/L211A and CFA/I/II/IV MEFA (Multiepitope Fusion Antigen) Induce Neutralizing Antibodies to 7 Adhesins (CFA/I, CS1-CS6) and Both Enterotoxins (LT, STa) of Enterotoxigenic Escherichia coli (ETEC). Front Microbiol. 2018;9:1198 Epub 2018/06/21. 10.3389/fmicb.2018.01198
    1. Clements JD, Norton EB. The Mucosal Vaccine Adjuvant LT(R192G/L211A) or dmLT. mSphere. 2018;3(4). Epub 2018/07/27. 10.1128/mSphere.00215-18
    1. Porter CK, Louis Bourgeois A, Frenck RW, Prouty M, Maier N, Riddle MS. Developing and utilizing controlled human models of infection. Vaccine. 2017. Epub 2017/06/07. 10.1016/j.vaccine.2017.05.068 .
    1. Levine MM, Rennels MB, Cisneros L, Hughes TP, Nalin DR, Young CR. Lack of person-to-person transmission of enterotoxigenic Escherichia coli despite close contact. Am J Epidemiol. 1980;111(3):347–55. Epub 1980/03/01. 10.1093/oxfordjournals.aje.a112906 .
    1. Todnem Sakkestad S, Steinsland H, Skrede S, Kleppa E, Lillebo K, Saevik M, et al. Experimental Infection of Human Volunteers with the Heat-Stable Enterotoxin-Producing Enterotoxigenic Escherichia coli Strain TW11681. Pathogens. 2019;8(2). Epub 2019/06/27. 10.3390/pathogens8020084 .
    1. Sahl JW, Steinsland H, Redman JC, Angiuoli SV, Nataro JP, Sommerfelt H, et al. A comparative genomic analysis of diverse clonal types of enterotoxigenic Escherichia coli reveals pathovar-specific conservation. Infect Immun. 2011;79(2):950–60. Epub 2010/11/17. 10.1128/IAI.00932-10
    1. Steinsland H, Lacher DW, Sommerfelt H, Whittam TS. Ancestral lineages of human enterotoxigenic Escherichia coli. J Clin Microbiol. 2010;48(8):2916–24. 10.1128/JCM.02432-09
    1. von Mentzer A, Connor TR, Wieler LH, Semmler T, Iguchi A, Thomson NR, et al. Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution. Nat Genet. 2014;46(12):1321–6. Epub 2014/11/11. 10.1038/ng.3145 .
    1. Skrede S, Steinsland H, Sommerfelt H, Aase A, Brandtzaeg P, Langeland N, et al. Experimental infection of healthy volunteers with enterotoxigenic Escherichia coli wild-type strain TW10598 in a hospital ward. BMC Infect Dis. 2014;14:482 10.1186/1471-2334-14-482
    1. Harro C, Chakraborty S, Feller A, DeNearing B, Cage A, Ram M, et al. Refinement of a human challenge model for evaluation of enterotoxigenic Escherichia coli vaccines. Clin Vaccine Immunol. 2011;18(10):1719–27. Epub 2011/08/20. 10.1128/CVI.05194-11
    1. Porter CK, Riddle MS, Alcala AN, Sack DA, Harro C, Chakraborty S, et al. An Evidenced-Based Scale of Disease Severity following Human Challenge with Enteroxigenic Escherichia coli. PLoS One. 2016;11(3):e0149358 Epub 2016/03/05. 10.1371/journal.pone.0149358
    1. Luo Q, Kumar P, Vickers TJ, Sheikh A, Lewis WG, Rasko DA, et al. Enterotoxigenic Escherichia coli secretes a highly conserved mucin-degrading metalloprotease to effectively engage intestinal epithelial cells. Infect Immun. 2014;82(2):509–21. 10.1128/IAI.01106-13
    1. Madhavan TP, Sakellaris H. Colonization factors of enterotoxigenic Escherichia coli. Adv Appl Microbiol. 2015;90:155–97. 10.1016/bs.aambs.2014.09.003 .
    1. Roy SP, Rahman MM, Yu XD, Tuittila M, Knight SD, Zavialov AV. Crystal structure of enterotoxigenic Escherichia coli colonization factor CS6 reveals a novel type of functional assembly. Mol Microbiol. 2012;86(5):1100–15. Epub 2012/10/11. 10.1111/mmi.12044 .
    1. Chapman DA, Zavialov AV, Chernovskaya TV, Karlyshev AV, Zav'yalova GA, Vasiliev AM, et al. Structural and functional significance of the FGL sequence of the periplasmic chaperone Caf1M of Yersinia pestis. J Bacteriol. 1999;181(8):2422–9. Epub 1999/04/10.
    1. Sadler R, Bateman EA, Heath V, Patel SY, Schwingshackl PP, Cullinane AC, et al. Establishment of a healthy human range for the whole blood "OX40" assay for the detection of antigen-specific CD4+ T cells by flow cytometry. Cytometry B Clin Cytom. 2014;86(5):350–61. 10.1002/cyto.b.21165 .
    1. Zaunders JJ, Munier ML, Seddiki N, Pett S, Ip S, Bailey M, et al. High levels of human antigen-specific CD4+ T cells in peripheral blood revealed by stimulated coexpression of CD25 and CD134 (OX40). J Immunol. 2009;183(4):2827–36. 10.4049/jimmunol.0803548 .
    1. Porter CK, Riddle MS, Tribble DR, Louis Bougeois A, McKenzie R, Isidean SD, et al. A systematic review of experimental infections with enterotoxigenic Escherichia coli (ETEC). Vaccine. 2011;29(35):5869–85. Epub 2011/05/28. 10.1016/j.vaccine.2011.05.021 .
    1. Cohen MB, Guarino A, Shukla R, Giannella RA. Age-related differences in receptors for Escherichia coli heat-stable enterotoxin in the small and large intestine of children. Gastroenterology. 1988;94(2):367–73. Epub 1988/02/01. 10.1016/0016-5085(88)90423-4 .
    1. Schroyen M, Stinckens A, Verhelst R, Niewold T, Buys N. The search for the gene mutations underlying enterotoxigenic Escherichia coli F4ab/ac susceptibility in pigs: a review. Vet Res. 2012;43:70 Epub 2012/10/16. 10.1186/1297-9716-43-70
    1. Francis DH, Grange PA, Zeman DH, Baker DR, Sun R, Erickson AK. Expression of mucin-type glycoprotein K88 receptors strongly correlates with piglet susceptibility to K88(+) enterotoxigenic Escherichia coli, but adhesion of this bacterium to brush borders does not. Infect Immun. 1998;66(9):4050–5. Epub 1998/08/26.
    1. Gaastra W, Svennerholm AM. Colonization factors of human enterotoxigenic Escherichia coli (ETEC). Trends Microbiol. 1996;4(11):444–52. Epub 1996/11/01. 10.1016/0966-842x(96)10068-8 .
    1. Ghosal A, Bhowmick R, Banerjee R, Ganguly S, Yamasaki S, Ramamurthy T, et al. Characterization and studies of the cellular interaction of native colonization factor CS6 purified from a clinical isolate of enterotoxigenic Escherichia coli. Infect Immun. 2009;77(5):2125–35. Epub 2009/02/25. 10.1128/IAI.01397-08
    1. Lundgren A, Bourgeois L, Carlin N, Clements J, Gustafsson B, Hartford M, et al. Safety and immunogenicity of an improved oral inactivated multivalent enterotoxigenic Escherichia coli (ETEC) vaccine administered alone and together with dmLT adjuvant in a double-blind, randomized, placebo-controlled Phase I study. Vaccine. 2014;32(52):7077–84. 10.1016/j.vaccine.2014.10.069 .
    1. Harro C, Sack D, Bourgeois AL, Walker R, DeNearing B, Feller A, et al. A combination vaccine consisting of three live attenuated enterotoxigenic Escherichia coli strains expressing a range of colonization factors and heat-labile toxin subunit B is well tolerated and immunogenic in a placebo-controlled double-blind phase I trial in healthy adults. Clin Vaccine Immunol. 2011;18(12):2118–27. Epub 2011/10/14. 10.1128/CVI.05342-11
    1. Coster TS, Wolf MK, Hall ER, Cassels FJ, Taylor DN, Liu CT, et al. Immune response, ciprofloxacin activity, and gender differences after human experimental challenge by two strains of enterotoxigenic Escherichia coli. Infect Immun. 2007;75(1):252–9. Epub 2006/11/01. 10.1128/IAI.01131-06

Source: PubMed

3
Subskrybuj