The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry

Kate Brody Nooner, Stanley J Colcombe, Russell H Tobe, Maarten Mennes, Melissa M Benedict, Alexis L Moreno, Laura J Panek, Shaquanna Brown, Stephen T Zavitz, Qingyang Li, Sharad Sikka, David Gutman, Saroja Bangaru, Rochelle Tziona Schlachter, Stephanie M Kamiel, Ayesha R Anwar, Caitlin M Hinz, Michelle S Kaplan, Anna B Rachlin, Samantha Adelsberg, Brian Cheung, Ranjit Khanuja, Chaogan Yan, Cameron C Craddock, Vincent Calhoun, William Courtney, Margaret King, Dylan Wood, Christine L Cox, A M Clare Kelly, Adriana Di Martino, Eva Petkova, Philip T Reiss, Nancy Duan, Dawn Thomsen, Bharat Biswal, Barbara Coffey, Matthew J Hoptman, Daniel C Javitt, Nunzio Pomara, John J Sidtis, Harold S Koplewicz, Francisco Xavier Castellanos, Bennett L Leventhal, Michael P Milham, Kate Brody Nooner, Stanley J Colcombe, Russell H Tobe, Maarten Mennes, Melissa M Benedict, Alexis L Moreno, Laura J Panek, Shaquanna Brown, Stephen T Zavitz, Qingyang Li, Sharad Sikka, David Gutman, Saroja Bangaru, Rochelle Tziona Schlachter, Stephanie M Kamiel, Ayesha R Anwar, Caitlin M Hinz, Michelle S Kaplan, Anna B Rachlin, Samantha Adelsberg, Brian Cheung, Ranjit Khanuja, Chaogan Yan, Cameron C Craddock, Vincent Calhoun, William Courtney, Margaret King, Dylan Wood, Christine L Cox, A M Clare Kelly, Adriana Di Martino, Eva Petkova, Philip T Reiss, Nancy Duan, Dawn Thomsen, Bharat Biswal, Barbara Coffey, Matthew J Hoptman, Daniel C Javitt, Nunzio Pomara, John J Sidtis, Harold S Koplewicz, Francisco Xavier Castellanos, Bennett L Leventhal, Michael P Milham

Abstract

The National Institute of Mental Health strategic plan for advancing psychiatric neuroscience calls for an acceleration of discovery and the delineation of developmental trajectories for risk and resilience across the lifespan. To attain these objectives, sufficiently powered datasets with broad and deep phenotypic characterization, state-of-the-art neuroimaging, and genetic samples must be generated and made openly available to the scientific community. The enhanced Nathan Kline Institute-Rockland Sample (NKI-RS) is a response to this need. NKI-RS is an ongoing, institutionally centered endeavor aimed at creating a large-scale (N > 1000), deeply phenotyped, community-ascertained, lifespan sample (ages 6-85 years old) with advanced neuroimaging and genetics. These data will be publically shared, openly, and prospectively (i.e., on a weekly basis). Herein, we describe the conceptual basis of the NKI-RS, including study design, sampling considerations, and steps to synchronize phenotypic and neuroimaging assessment. Additionally, we describe our process for sharing the data with the scientific community while protecting participant confidentiality, maintaining an adequate database, and certifying data integrity. The pilot phase of the NKI-RS, including challenges in recruiting, characterizing, imaging, and sharing data, is discussed while also explaining how this experience informed the final design of the enhanced NKI-RS. It is our hope that familiarity with the conceptual underpinnings of the enhanced NKI-RS will facilitate harmonization with future data collection efforts aimed at advancing psychiatric neuroscience and nosology.

Keywords: DTI; brain; discovery; fMRI; lifespan; open science; phenotype; psychiatry.

Figures

Figure 1
Figure 1
Assessment protocol for NKI-RS. This figure illustrates all of the assessments that are included in the 2-day enhanced Nathan Kline Institute-Rockland Sample (NKI-RS) protocol. There are five broad domains of assessment: General, Physical, Neurocognitive, Diagnostic, and Behavioral. Within the table are the names, abbreviations, and age ranges in years for each of the assessments.
Figure 2
Figure 2
Sample schedule for adult participants in NKI-RS. This figure illustrates the 2-day assessment schedule for adult participants (ages 18–85 years) in the Nathan Kline Institute-Rockland Sample (NKI-RS) protocol. Abbreviations for the assessments: ANT, Attention Network Task; ASR, Adult Self Report; ATQ, Adult Temperament Questionnaire; BDI, Beck Depression Inventory-II; CAARS, Conners’ Adult ADHD Rating Scales; CASI-AOD, Comprehensive Adolescent Severity Inventory – Alcohol and Other Drugs; CHRLS, Cambridge-Hopkins Restless Leg Syndrome Questionnaire; CFQ, Cognitive Failures Questionnaire; DOSPERT, DOSPERT Risk Taking Scale; GDS-LF, Geriatric Depression Scale-Long Form; OASR, Older Adult Self Report; EDEQ, Eating Disorder Examination Questionnaire; EHI, Edinburgh Handedness Inventory; FTND, Fagerstrom Test for Nicotine Dependence; ICU-Y, Inventory of Callous-Unemotional Traits Youth Version; IPAQ, International Physical Activity Questionnaire; IRI, Interpersonal Reactivity Index; NEO-FFI, NEO Five Factor Inventory; PDI-21, 21-Item Peters et al. Delusions Inventory; PSQI, Pittsburgh Sleep Quality Index; STAI, State Trait Anxiety Inventory; TFEQ, Three Factor Eating Questionnaire; TSC-40, Trauma Symptom Checklist; UCLA-RI, UCLA PTSD Reaction Index for Children and Adolescents; UPPS-P, UPPS Impulsive Behavior Scale; Vineland-II, Vineland Adaptive Behavior Scales Parent Rating Form, Second Edition; WASI-II, Wechsler Abbreviated Scale of Intelligence-II; WIAT-II-A, Wechsler Individual Achievement Test-II-Abbreviated; Y-BOCS, Yale-Brown Obsessive Compulsive Scale; YGTSS, Yale Global Tic Severity Scale; YRBSS, Youth Risk Behavior Surveillance System.
Figure 3
Figure 3
Sample schedule for child and parent participants in NKI-RS. This figure illustrates the 2-day assessment schedule for child and parent participants (children ages 6–17 years) in the Nathan Kline Institute-Rockland Sample (NKI-RS) protocol. Abbreviations for the assessments: ANT, Attention Network Task; ASSQ, Autism Spectrum Screening Questionnaire; ATQ, Adult Temperament Questionnaire; BASC-2, Behavioral Assessment System for Children; CASI-AOD, Comprehensive Adolescent Severity Inventory-Alcohol and Other Drugs; CASS-S, Conner-Wells’ Adolescent Self-Report Scale-Short; CBCL, Child Behavioral Checklist; CBQ, Children’s Behavior Questionnaire; CFQ, Cognitive Failures Questionnaire; CDI-II, Children’s Depression Inventory-II; CEBQ, Child Eating Behavior Questionnaire; CPRS-R-S, Conners’ Parent Rating Scale-Revised-Short; CY-BOCS, Children’s Yale-Brown Obsessive Compulsive Scale; EATQ, Early Adolescent Temperament Questionnaire Parent Report; EDEQ, Eating Disorder Examination Questionnaire; EHI, Edinburgh Handedness Inventory; FTAQ, Fagerstrom Tolerance Questionnaire for Adolescents; ICU-P, Inventory of Callous-Unemotional Traits Parent Report; ICU-Y, Inventory of Callous-Unemotional Traits Youth Version; IPAQ, International Physical Activity Questionnaire; IRI, Interpersonal Reactivity Index; K-SADS-PL, Kiddie Schedule for Affective Disorders and Schizophrenia; MASC, Multidimensional Anxiety Scale for Children; MRI-Q, Magnetic Resonance Imaging Questionnaire; NEO-FFI, NEO Five Factor Inventory; PSQI, Pittsburgh Sleep Quality Index; RBSR, Repetitive Behavior Scale-Revised; SES, Hollingshead Four Factor Index of Socioeconomic Status; SRS, Social Responsiveness Scale-Parent Report; SWAN, Strengths and Weaknesses of Attention-Deficit/Hyperactivity Disorder Symptoms and Normal-Behavior Scale-Parent Version; TANN, Tanner Staging; TFEQ, Three Factor Eating Questionnaire; TSC-C, Trauma Symptom Checklist for Children; UCLA-RI, UCLA PTSD Reaction Index for Children and Adolescents; UCLA-RI-P, UCLA PTSD Reaction Index–Parent version; Vineland-II, Vineland Adaptive Behavior Scales Parent Rating Form, Second Edition; WASI-II, Wechsler Abbreviated Scale of Intelligence-II; WIAT-II-A, Wechsler Individual Achievement Test-II-Abbreviated; YGTSS, Yale Global Tic Severity Scale; YRBSS, Youth Risk Behavior Surveillance System; YSR, Achenbach Youth Self Report.

References

    1. 1000 Functional Connectomes Project (FCP) (2009). Available at: [accessed February 2, 2012].
    1. Allen E. A., Erhardt E. B., Damaraju E., Gruner W., Segall J. M., Silva R. F., et al. (2011). A baseline for the multivariate comparison of resting-state networks. Front. Syst. Neurosci. 5:2.10.3389/fnsys.2011.00002
    1. Bilder R. M., Sabb F. W., Cannon T. D., London E. D., Jentsch J. D., Parker D. S., et al. (2009). Phenomics: the systematic study of phenotypes on a genome-wide scale. Neuroscience 164, 30–4210.1016/j.neuroscience.2009.01.027
    1. Biswal B. B., Mennes M., Zuo X. N., Gohel S., Kelly C., Smith S. M., et al. (2010). Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A. 107, 4734–473910.1073/pnas.0911855107
    1. Buckner R. (2012). The Brain Genomics Superstruct Project. Available at: [accessed February 5, 2012].
    1. Castellanos F. X., Lee P. P., Sharp W., Jeffries N. O., Greenstein D. K., Clasen L. S., et al. (2002). Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 288, 1740–174810.1001/jama.288.14.1740
    1. Chabernaud C., Mennes M., Kelly C., Nooner K., Di Martino A., Castellanos F. X., et al. (2012). Dimensional brain-behavior relationships in children with attention-deficit/hyperactivity disorder. Biol. Psychiatry 71, 434–44210.1016/j.biopsych.2011.08.013
    1. Church J. A., Fair D. A., Dosenbach N. U., Cohen A. L., Miezin F. M., Petersen S. E., et al. (2009a). Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 132, 225–23810.1093/brain/awn223
    1. Church J. A., Wenger K. K., Dosenbach N. U., Miezin F. M., Petersen S. E., Schlaggar B. L. (2009b). Task control signals in pediatric tourette syndrome show evidence of immature and anomalous functional activity. Front. Hum. Neurosci. 3:38.10.3389/neuro.09.038.2009
    1. Cichon S., Craddock N., Daly M., Faraone S. V., Gejman P. V., Kelsoe J., et al. (2009). Genomewide association studies: history, rationale, and prospects for psychiatric disorders. Am. J. Psychiatry 166, 540–55610.1176/appi.ajp.2008.08091354
    1. Conners C. K. (1999). Clinical use of rating scales in diagnosis and treatment of attention-deficit/hyperactivity disorder. Pediatr. Clin. North Am. 46, 857–87010.1016/S0031-3955(05)70159-0
    1. Conners C. K., Wells K. C., Parker J. D., Sitarenios G., Diamond J. M., Powell J. W. (1997). A new self-report scale for assessment of adolescent psychopathology: factor structure, reliability, validity, and diagnostic sensitivity. J. Abnorm. Child. Psychol. 25, 487–49710.1023/A:1022637815797
    1. Delis D. C., Kramer J. H., Kaplan E., Holdnack J. (2004). Reliability and validity of the Delis-Kaplan Executive Function System: an update. J. Int. Neuropsychol. Soc. 10, 301–30310.1017/S1355617704102191
    1. Dolgin E. (2010). This is your brain online: the Functional Connectomes Project. Nat. Med. 16, 351.10.1038/nm0610-624
    1. Dosenbach N. U., Nardos B., Cohen A. L., Fair D. A., Power J. D., Church J. A., et al. (2010). Prediction of individual brain maturity using fMRI. Science 329, 1358–136110.1126/science.1194144
    1. Drevets W. C. (2003). Neuroimaging abnormalities in the amygdala in mood disorders. Ann. N. Y. Acad. Sci. 985, 420–44410.1111/j.1749-6632.2003.tb07098.x
    1. Epstein J. N., Casey B. J., Tonev S. T., Davidson M., Reiss A. L., Garrett A., et al. (2007). Assessment and prevention of head motion during imaging of patients with attention deficit hyperactivity disorder. Psychiatry Res. 155, 75–8210.1016/j.pscychresns.2006.12.009
    1. Evans A. C., Brain Development Cooperative Group (2006). The NIH MRI study of normal brain development. Neuroimage 30, 184–20210.1016/j.neuroimage.2005.09.068
    1. Fair D. A., Cohen A. L., Dosenbach N. U., Church J. A., Miezin F. M., Barch D. M., et al. (2008). The maturing architecture of the brain’s default network. Proc. Natl. Acad. Sci. U.S.A. 105, 4028–403210.1073/pnas.0800376105
    1. Fair D. A., Cohen A. L., Power J. D., Dosenbach N. U., Church J. A., Miezin F. M., et al. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Comput. Biol. 5, e1000381.10.1371/journal.pcbi.1000381
    1. Fair D. A., Dosenbach N. U., Church J. A., Cohen A. L., Brahmbhatt S., Miezin F. M., et al. (2007). Development of distinct control networks through segregation and integration. Proc. Natl. Acad. Sci. U.S.A. 104, 13507–1351210.1073/pnas.0705843104
    1. Falkner F. (1958). Some physical measurements in the first three years of life. Arch. Dis. Child. 33, 1.10.1136/adc.33.167.1
    1. Feinberg D. A., Moeller S., Smith S. M., Auerbach E., Ramanna S., Gunther M., et al. (2010). Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS ONE 5, e15710.10.1371/journal.pone.0015710
    1. Feinberg D. A., Yacoub E. (2012). The rapid development of high speed, resolution and precision in fMRI. Neuroimage 62, 720–72510.1016/j.neuroimage.2012.01.049
    1. Friedman L., Glover G. H. (2006). Report on a multicenter fMRI quality assurance protocol. J. Magn. Reson. Imaging 23, 827–83910.1002/jmri.20583
    1. Ge Y., Grossman R. I., Babb J. S., Rabin M. L., Mannon L. J., Kolson D. L. (2002). Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am. J. Neuroradiol. 23, 1327–1333
    1. Giedd J. N. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Neuroimage 2, 861–863
    1. Giedd J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Ann. N. Y. Acad. Sci. 1021, 77–8510.1196/annals.1308.009
    1. Giedd J. N., Rapoport J. L. (2010). Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67, 728–73410.1016/j.neuron.2010.08.040
    1. Giedd J. N., Stockman M., Weddle C., Liverpool M., Alexander-Bloch A., Wallace G. L., et al. (2010). Anatomic magnetic resonance imaging of the developing child and adolescent brain and effects of genetic variation. Neuropsychol. Rev. 20, 349–36110.1007/s11065-010-9151-9
    1. Gogtay N., Giedd J. N., Lusk L., Hayashi K. M., Greenstein D., Vaituzis A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. U.S.A. 101, 8174–817910.1073/pnas.0402680101
    1. Gogtay N., Greenstein D., Lenane M., Clasen L., Sharp W., Gochman P., et al. (2007). Cortical brain development in nonpsychotic siblings of patients with childhood-onset schizophrenia. Arch. Gen. Psychiatry 64, 772–78010.1001/archpsyc.64.7.772
    1. Gur R. C., Ragland J. D., Moberg P. J., Turner T. H., Bilker W. B., Kohler C., et al. (2001). Computerized neurocognitive scanning: I. Methodology and validation in healthy people. Neuropsychopharmacology 25, 766–77610.1016/S0893-133X(01)00278-0
    1. Hay D. A., Bennett K. S., Levy F., Sergeant J., Swanson J. (2007). A twin study of attention-deficit/hyperactivity disorder dimensions rated by the strengths and weaknesses of ADHD-symptoms and normal-behavior (SWAN) scale. Biol. Psychiatry 61, 700–70510.1016/j.biopsych.2006.04.040
    1. Helmer K. G., Ambite J. L., Ames J., Ananthakrishnan R., Burns G., Chervenak A. L., et al. (2011). Enabling collaborative research using the Biomedical Informatics Research Network (BIRN). J. Am. Med. Inform. Assoc. 18, 416–42210.1136/amiajnl-2010-000032
    1. Kelly A. M. C., Di Martino A., Uddin L. Q., Shehzad Z., Gee D. G., Reiss P. T., et al. (2009). Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb. Cortex 19, 640–65710.1093/cercor/bhn117
    1. Kessler R. C., Berglund P., Demler O., Jin R., Merikangas K. R., Walters E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–60210.1001/archpsyc.62.6.617
    1. Kessler R. C., Wang P. S. (2008). The descriptive epidemiology of commonly occurring mental disorders in the United States. Annu. Rev. Public Health 29, 115–12910.1146/annurev.publhealth.29.020907.090847
    1. Kraemer H. C., Yesavage J. A., Taylor J. L., Kupfer D. (2000). How can we learn about developmental processes from cross-sectional studies, or can we? Am. J. Psychiatry 157, 163–17110.1176/appi.ajp.157.2.163
    1. Lanktree M. B., Hassell R. G., Lahiry P., Hegele R. A. (2010). Phenomics: expanding the role of clinical evaluation in genomic studies. J. Investig. Med. 58, 700–706
    1. Longitudinal Online Research and Imaging System (LORIS). (2011). Available at: [accessed February 1, 2012].
    1. Marcus D. S., Olsen T. R., Ramaratnam M., Buckner R. L. (2007). The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 5, 11–34
    1. Milham M. P. (2012). Open neuroscience solutions for the connectome-wide association era. Neuron 73, 214–21810.1016/j.neuron.2011.11.004
    1. Milham M. P., Nugent A. C., Drevets W. C., Dickstein D. P., Leibenluft E., Ernst M., et al. (2005). Selective reduction in amygdala volume in pediatric anxiety disorders: a voxel-based morphometry investigation. Biol. Psychiatry 57, 961–96610.1016/j.biopsych.2005.01.038
    1. Moeller S., Yacoub E., Olman C. A., Auerbach E., Strupp J., Harel N., et al. (2010). Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63, 1144–115310.1002/mrm.22361
    1. Mueller S. G., Weiner M. W., Thal L. J., Petersen R. C., Jack C. R., Jagust W., et al. (2005). Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement. 1, 55–6610.1016/j.jalz.2005.06.126
    1. National Database for Autism Research (NDAR) (2009). Available at: [accessed February 14, 2012].
    1. National Institute of Mental Health (2008). National Institute of Mental Health Strategic Plan. Available at: [accessed February 10, 2012].
    1. Nellhaus G. (1968). Head circumference from birth to eighteen years. Practical composite international and interracial graphs. Pediatrics 41, 106–114
    1. Pediatric Imaging, Neurocognition, and Genetics (PING) (2011). Available at: [accessed February 5, 2012].
    1. Poldrack R. A. (2011). The future of fMRI in cognitive neuroscience. Neuroimage 62, 2016–2020
    1. Power J. D., Barnes K. A., Snyder A. Z., Schlaggar B. L., Petersen S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–215410.1016/j.neuroimage.2011.10.018
    1. Riverol M., López O. L. (2011). Biomarkers in Alzheimer’s disease. Front. Neurol. 2, 46.
    1. Scott A., Courtney W., Wood D., de la Garza R., Lane S., King M., Wang R., et al. (2011). COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Front. Neuroinform. 5:33.10.3389/fninf.2011.00033
    1. Shaw P., Gogtay N., Rapoport J. (2010). Childhood psychiatric disorders as anomalies in neurodevelopmental trajectories. Hum. Brain Mapp. 31, 917–92510.1002/hbm.21028
    1. Shaw P., Greenstein D., Lerch J., Clasen L., Lenroot R., Gogtay N., et al. (2006a). Intellectual ability and cortical development in children and adolescents. Nature 440, 676–67910.1038/nature04513
    1. Shaw P., Lerch J., Greenstein D., Sharp W., Clasen L., Evans A., et al. (2006b). Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 63, 540–54910.1001/archpsyc.63.7.721
    1. Shaw P., Kabani N. J., Lerch J. P., Eckstrand K., Lenroot R., Gogtay N., et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex. J. Neurosci. 28, 3586–359410.1523/JNEUROSCI.5309-07.2008
    1. Shim Y. S., Morris J. C. (2011). Biomarkers predicting Alzheimer’s disease in cognitively normal aging. J. Clin. Neurol. 7, 60–6810.3988/jcn.2011.7.2.60
    1. Smith S. M., Miller K. L., Moeller S., Xu J., Auerbach E. J., Woolrich M. W., et al. (2012). Temporally-independent functional modes of spontaneous brain activity. Proc. Natl. Acad. Sci. U.S.A. 109, 3131–313610.1073/pnas.1201714109
    1. Sowell E. R., Thompson P. M., Leonard C. M., Welcome S. E., Kan E., Toga A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. J. Neurosci. 24, 8223–823110.1523/JNEUROSCI.1798-04.2004
    1. Szklo M. (1998). Population-based cohort studies. Epidemiol. Rev. 20, 81–9010.1093/oxfordjournals.epirev.a017974
    1. Taber K. H., Salpekar J., Wong A. H., Hurley R. A. (2011). Developmental origins for neuropsychiatric illness. J. Neuropsychiatry Clin. Neurosci. 23, 1–510.1176/appi.neuropsych.23.2.A1
    1. Tamnes C. K., Ostby Y., Fjell A. M., Westlye L. T., Due-Tønnessen P., Walhovd K. B. (2010). Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb. Cortex 20, 534–54810.1093/cercor/bhp118
    1. The Mind Research Network for Neurodiagnostic Discovery (2012). Available at: [accessed February 5, 2012].
    1. Thompson W., Hallmayer J., O’Hara R. (2011). Design considerations for characterizing psychiatric trajectories across the lifespan: application to effects of APOE-ε4 on cerebral cortical thickness in Alzheimer’s disease. Am. J. Psychiatry 168, 894–90310.1176/appi.ajp.2011.10111690
    1. Tracy R. P. (2008). “Deep phenotyping”: characterizing populations in the era of genomics and systems biology. Curr. Opin. Lipidol. 19, 151–15710.1097/MOL.0b013e3282f73893
    1. U.S. Census Bureau (2010). U.S. Census Bureau State & County Quickfacts: U.S.A Available at: [accessed March 3, 2012].
    1. Van Dijk K. R., Hedden T., Venkataraman A., Evans K. C., Lazar S. W., Buckner R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J. Neurophysiol. 103, 297–32110.1152/jn.00783.2009
    1. Van Dijk K. R., Savunvu M. R., Buckney R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–43810.1016/j.neuroimage.2011.07.044
    1. Van Essen D. C., Ugurbil K., Auerbach E., Barch D., Behrens T. E., Bucholz R., et al. (2012). The Human Connectome Project: a data acquisition perspective. Neuroimage 62, 2222–223110.1016/j.neuroimage.2012.02.018
    1. Van Horn J. D., Gazzaniga M. S. (2002). Opinion: databasing fMRI studies towards a “discovery science” of brain function. Nat. Rev. Neurosci. 3, 314–31810.1038/nrn788
    1. Waber D. P., De Moor C., Forbes P. W., Almli C. R., Botteron K. N., Leonard G., et al. (2007). The NIH MRI study of normal brain development: performance of a population based sample of healthy children aged 6 to 18 years on a neuropsychological battery. J. Int. Neuropsychol. Soc. 13, 729–74610.1017/S1355617707070841
    1. Yeo B. T., Krienen F. M., Sepulcre J., Sabuncu M. R., Lashkari D., Hollinshead M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–116510.1152/jn.00338.2011
    1. Zuo X. N., Kelly C., Di Martino A., Mennes M., Margulies D. S., Bangaru S., et al. (2010). Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J. Neurosci. 30, 15034–1504310.1523/JNEUROSCI.2612-10.2010

Source: PubMed

3
Subskrybuj