Apolipoprotein CIII predicts cardiovascular events in patients with coronary artery disease: a prospective observational study

Julius L Katzmann, Christian M Werner, Tatjana Stojakovic, Winfried März, Hubert Scharnagl, Ulrich Laufs, Julius L Katzmann, Christian M Werner, Tatjana Stojakovic, Winfried März, Hubert Scharnagl, Ulrich Laufs

Abstract

Background: Apolipoprotein CIII (apoCIII) is associated with triglyceride-rich lipoprotein metabolism and has emerged as independent marker for risk of cardiovascular disease. The objective was to test whether apoCIII is regulated postprandially and whether apoCIII concentrations in native and chylomicron-free serum predict future cardiovascular events in patients with stable coronary artery disease (CAD).

Methods: ApoCIII concentrations were measured in native and chylomicron-free serum in the fasting state and after a standardized oral fat load test in 195 patients with stable CAD. Clinical follow-up was 48 months. Chylomicron-free serum was prepared by ultracentrifugation (18,000 rpm, 3 h). The log-rank test and Cox regression analyses were used to investigate the association of apoCIII with recurrent cardiovascular events.

Results: Of the 195 patients included, 92 had a cardiovascular event, and 103 did not. 97% were treated with a statin. No significant changes in apoCIII concentration were observed after the oral fat load test. The apoCIII concentration was associated with event-free survival independent of conventional risk factors. This association reached statistical significance only for apoCIII concentration measured in chylomicron-free serum (hazard ratio [95% confidence interval] for apoCIII above the mean: postprandial: 1.67 (1.06-2.29), P = 0.028, fasting: 2.09 (1.32-3.32), P = 0.002), but not for apoCIII concentration measured in native serum (postprandial: 1.47 [0.89-2.43], P = 0.133, fasting: 1.56 [0.95-2.58], P = 0.081). The effects were independent of other risk factors.

Conclusions: ApoCIII concentrations in chylomicron-free serum are independently associated with event-free survival in patients with CAD both in fasting and postprandial state. This findings support considering apoCIII for risk assessment and attempting to test the hypothesis that lowering apoCIII reduces residual cardiovascular risk.

Take home message: Apolipoprotein CIII concentration measured in chylomicron-free serum predicts recurrent cardiovascular events in patients with stable coronary artery disease.

Trial registration: The trial which included the participants of this study was registered at https://ichgcp.net/clinical-trials-registry/NCT00628524" title="See in ClinicalTrials.gov">NCT00628524) on March 5, 2008.

Keywords: Antisense oligonucleotide; Apolipoprotein CIII; Cardiovascular disease; Chylomicron; Coronary artery disease; Oral fat tolerance test; Risk factor; Triglyceride; Ultracentrifugation.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Kaplan-Meier curves of event-free survival for 48 months, stratified by tertiles of apoCIII concentrations in chylomicron-free serum fasting (a) and postprandial after standardized fat load test (b). HR: hazard ratio, CI: confidence interval
Fig. 2
Fig. 2
Multivariable Cox regression analyses of the association of fasting and postprandial apoCIII below and above the mean (chylomicron-free serum) and the primary end point (fully adjusted for age*time, gender, LDL cholesterol, HOMA index, fasting triglycerides for fasting samples and 5-h triglyceride area under the curve for postprandial samples, respectively, metabolic syndrome, and smoking status). CI: confidence interval

References

    1. Ooi EMM, Barrett PHR, Chan DC, Watts GF. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin Sci. 2008;114:611–624. doi: 10.1042/CS20070308.
    1. Ginsberg HN, Le NA, Goldberg IJ, Gibson JC, Rubinstein A, Wang-Iverson P, et al. Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest. 1986;78:1287–1295. doi: 10.1172/JCI112713.
    1. McConathy WJ, Gesquiere JC, Bass H, Tartar A, Fruchart JC, Wang CS. Inhibition of lipoprotein lipase activity by synthetic peptides of apolipoprotein C-III. J Lipid Res. 1992;33:995–1003.
    1. Windler E, Havel RJ. Inhibitory effects of C apolipoproteins from rats and humans on the uptake of triglyceride-rich lipoproteins and their remnants by the perfused rat liver. J Lipid Res. 1985;26:556–565.
    1. Zheng C, Khoo C, Furtado J, Sacks FM. Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation. 2010;121:1722–1734. doi: 10.1161/CIRCULATIONAHA.109.875807.
    1. Sundaram M, Zhong S, Bou Khalil M, Links PH, Zhao Y, Iqbal J, et al. Expression of apolipoprotein C-III in McA-RH7777 cells enhances VLDL assembly and secretion under lipid-rich conditions. J Lipid Res. 2010;51:150–161. doi: 10.1194/M900346-JLR200.
    1. Yao Z. Human apolipoprotein C-III - a new intrahepatic protein factor promoting assembly and secretion of very low density lipoproteins. Cardiovasc Hematol Disord Drug Targets. 2012;12:133–140. doi: 10.2174/1871529X11202020133.
    1. Kawakami A, Aikawa M, Alcaide P, Luscinskas FW, Libby P, Sacks FM. Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation. 2006;114:681–687. doi: 10.1161/CIRCULATIONAHA.106.622514.
    1. Zheng C, Azcutia V, Aikawa E, Figueiredo J-L, Croce K, Sonoki H, et al. Statins suppress apolipoprotein CIII-induced vascular endothelial cell activation and monocyte adhesion. Eur Heart J. 2013;34:615–624. doi: 10.1093/eurheartj/ehs271.
    1. Martinelli Nicola, Baroni Marcello, Castagna Annalisa, Lunghi Barbara, Stefanoni Filippo, Tosi Federica, Croce Jacopo, Udali Silvia, Woodhams Barry, Girelli Domenico, Bernardi Francesco, Olivieri Oliviero. Apolipoprotein C-III Strongly Correlates with Activated Factor VII–Anti-Thrombin Complex: An Additional Link between Plasma Lipids and Coagulation. Thrombosis and Haemostasis. 2019;119(02):192–202. doi: 10.1055/s-0038-1676817.
    1. Jensen MK, Rimm EB, Furtado JD, Sacks FM. Apolipoprotein C-III as a potential modulator of the association between HDL-cholesterol and incident coronary heart disease. J Am Heart Assoc. 2012. 10.1161/JAHA.111.000232.
    1. Mendivil CO, Rimm EB, Furtado J, Chiuve SE, Sacks FM. Low-density lipoproteins containing apolipoprotein C-III and the risk of coronary heart disease. Circulation. 2011;124:2065–2072. doi: 10.1161/CIRCULATIONAHA.111.056986.
    1. Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31. doi: 10.1056/NEJMoa1307095.
    1. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371:32–41. doi: 10.1056/NEJMoa1308027.
    1. Pechlaner R, Tsimikas S, Yin X, Willeit P, Baig F, Santer P, et al. Very-low-density lipoprotein-associated Apolipoproteins predict cardiovascular events and are lowered by inhibition of APOC-III. J Am Coll Cardiol. 2017;69:789–800. doi: 10.1016/j.jacc.2016.11.065.
    1. van Capelleveen JC, Bernelot Moens SJ, Yang X, Kastelein JJP, Wareham NJ, Zwinderman AH, et al. Apolipoprotein C-III levels and incident coronary artery disease risk: the EPIC-Norfolk prospective population study. Arterioscler Thromb Vasc Biol. 2017;37:1206–1212. doi: 10.1161/ATVBAHA.117.309007.
    1. Scheffer PG, Teerlink T, Dekker JM, Bos G, Nijpels G, Diamant M, et al. Increased plasma apolipoprotein C-III concentration independently predicts cardiovascular mortality: the Hoorn study. Clin Chem. 2008;54:1325–1330. doi: 10.1373/clinchem.2008.103234.
    1. Silbernagel G, Scharnagl H, Kleber ME, Grammer TB, Delgado G, Stojakovic T, et al. J-shaped association of circulating apolipoprotein C3 with cardiovascular mortality. Atherosclerosis. 2017;263:e89–e90. doi: 10.1016/j.atherosclerosis.2017.06.292.
    1. Wyler von Ballmoos MC, Haring B, Sacks FM. The risk of cardiovascular events with increased apolipoprotein CIII: A systematic review and meta-analysis. J Clin Lipidol. 2015;9:498–510. doi: 10.1016/j.jacl.2015.05.002.
    1. Kwiterovich PO. The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and triglycerides: a current review. Am J Cardiol. 2000;86:5L–10L. doi: 10.1016/S0002-9149(00)01461-2.
    1. Werner C, Filmer A, Fritsch M, Groenewold S, Gräber S, Böhm M, Laufs U. Risk prediction with triglycerides in patients with stable coronary disease on statin treatment. Clin Res Cardiol. 2014;103:984–997. doi: 10.1007/s00392-014-0740-0.
    1. Bachorik PS, Ross JW. National Cholesterol Education Program recommendations for measurement of low-density lipoprotein cholesterol: executive summary. The National Cholesterol Education Program Working Group on lipoprotein measurement. Clin Chem. 1995;41:1414–1420. doi: 10.1093/clinchem/41.10.1414.
    1. Wanner C, Hörl WH, Luley CH, Wieland H. Effects of HMG-CoA reductase inhibitors in hypercholesterolemic patients on hemodialysis. Kidney Int. 1991;39:754–760. doi: 10.1038/ki.1991.92.
    1. Barr SI, Kottke BA, Mao SJ. Postprandial distribution of apolipoproteins C-II and C-III in normal subjects and patients with mild hypertriglyceridemia: comparison of meals containing corn oil and medium-chain triglyceride oil. Metabolism. 1985;34:983–992. doi: 10.1016/0026-0495(85)90068-X.
    1. Annuzzi G, Holmquist L, Carlson LA. Concentrations of apolipoproteins B, C-I, C-II, C-III, E and lipids in serum and serum lipoproteins of normal subjects during alimentary lipaemia. Scand J Clin Lab Invest. 1989;49:73–81. doi: 10.3109/00365518909089080.
    1. Archer WR, Desroches S, Lamarche B, Deriaz O, Landry N, Fontaine-Bisson B, et al. Variations in plasma apolipoprotein C-III levels are strong correlates of the triglyceride response to a high-monounsaturated fatty acid diet and a high-carbohydrate diet. Metabolism. 2005;54:1390–1397. doi: 10.1016/j.metabol.2005.05.004.
    1. Kosuge K, Miida T, Takahashi A, Obayashi K, Ito M, Ito T, et al. Estimating the fasting triglyceride concentration from the postprandial HDL-cholesterol and apolipoprotein CIII concentrations. Atherosclerosis. 2006;184:413–419. doi: 10.1016/j.atherosclerosis.2005.05.037.
    1. Zhang T, Tang X, Mao L, Chen J, Kuang J, Guo X, et al. HDL-associated apoCIII plays an independent role in predicting postprandial hypertriglyceridemia. Clin Biochem. 2020;79:14–22. doi: 10.1016/j.clinbiochem.2020.02.004.
    1. Dittrich J, Beutner F, Teren A, Thiery J, Burkhardt R, Scholz M, Ceglarek U. Plasma levels of apolipoproteins C-III, A-IV, and E are independently associated with stable atherosclerotic cardiovascular disease. Atherosclerosis. 2018;281:17–24. doi: 10.1016/j.atherosclerosis.2018.11.006.
    1. Caron S, Verrijken A, Mertens I, Samanez CH, Mautino G, Haas JT, et al. Transcriptional activation of apolipoprotein CIII expression by glucose may contribute to diabetic dyslipidemia. Arterioscler Thromb Vasc Biol. 2011;31:513–519. doi: 10.1161/ATVBAHA.110.220723.
    1. Li WW, Dammerman MM, Smith JD, Metzger S, Breslow JL, Leff T. Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. J Clin Invest. 1995;96:2601–2605. doi: 10.1172/JCI118324.
    1. Wulff AB, Nordestgaard BG, Tybjærg-Hansen A. APOC3 loss-of-function mutations, remnant cholesterol, low-density lipoprotein cholesterol, and cardiovascular risk: mediation- and meta-analyses of 137 895 individuals. Arterioscler Thromb Vasc Biol. 2018;38:660–668. doi: 10.1161/ATVBAHA.117.310473.
    1. Varbo A, Benn M, Tybjærg-Hansen A, Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61:427–436. doi: 10.1016/j.jacc.2012.08.1026.
    1. Nordestgaard BG, Tybjaerg-Hansen A. IDL, VLDL, chylomicrons and atherosclerosis. Eur J Epidemiol. 1992;8(Suppl 1):92–98. doi: 10.1007/BF00145358.
    1. Olivieri O, Martinelli N, Girelli D, Pizzolo F, Friso S, Beltrame F, et al. Apolipoprotein C-III predicts cardiovascular mortality in severe coronary artery disease and is associated with an enhanced plasma thrombin generation. J Thromb Haemost. 2010;8:463–471. doi: 10.1111/j.1538-7836.2009.03720.x.
    1. Sacks FM, Alaupovic P, Moye LA, Cole TG, Sussex B, Stampfer MJ, et al. VLDL, Apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the cholesterol and recurrent events (CARE) trial. Circulation. 2000;102:1886–1892. doi: 10.1161/01.CIR.102.16.1886.
    1. Cohen JC, Stender S, Hobbs HH. APOC3, coronary disease, and complexities of Mendelian randomization. Cell Metab. 2014;20:387–389. doi: 10.1016/j.cmet.2014.08.007.
    1. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with Icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22. doi: 10.1056/NEJMoa1812792.
    1. Gaudet D, Alexander VJ, Baker BF, Brisson D, Tremblay K, Singleton W, et al. Antisense inhibition of Apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373:438–447. doi: 10.1056/NEJMoa1400283.
    1. Gaudet D, Brisson D, Tremblay K, Alexander VJ, Singleton W, Hughes SG, et al. Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med. 2014;371:2200–2206. doi: 10.1056/NEJMoa1400284.
    1. Graham MJ, Lee RG, Bell TA, Fu W, Mullick AE, Alexander VJ, et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112:1479–1490. doi: 10.1161/CIRCRESAHA.111.300367.

Source: PubMed

3
Subskrybuj