Effects of a Home-Based Lifestyle Intervention Program on Cardiometabolic Health in Breast Cancer Survivors during the COVID-19 Lockdown

Valentina Natalucci, Carlo Ferri Marini, Marco Flori, Francesca Pietropaolo, Francesco Lucertini, Giosuè Annibalini, Luciana Vallorani, Davide Sisti, Roberta Saltarelli, Anna Villarini, Silvia Monaldi, Simone Barocci, Vincenzo Catalano, Marco Bruno Luigi Rocchi, Piero Benelli, Vilberto Stocchi, Elena Barbieri, Rita Emili, Valentina Natalucci, Carlo Ferri Marini, Marco Flori, Francesca Pietropaolo, Francesco Lucertini, Giosuè Annibalini, Luciana Vallorani, Davide Sisti, Roberta Saltarelli, Anna Villarini, Silvia Monaldi, Simone Barocci, Vincenzo Catalano, Marco Bruno Luigi Rocchi, Piero Benelli, Vilberto Stocchi, Elena Barbieri, Rita Emili

Abstract

This study aimed to evaluate the cardiometabolic effects of a home-based lifestyle intervention (LI) in breast cancer survivors (BCSs) during the COVID-19 lockdown. In total, 30 BCSs (women; stages 0-II; non-metastatic; aged 53.5 ± 7.6 years; non-physically active; normal left ventricular systolic function) with a risk factor for recurrence underwent a 3-month LI based on nutrition and exercise. Anthropometrics, Mediterranean diet adherence, physical activity level (PAL), cardiorespiratory fitness (VO2max), echocardiographic parameters, heart rate variability (average standard deviation of NN intervals (ASDNN/5 min) and 24 h very- (24 hVLF) and low-frequency (24 hLF)), and metabolic, endocrine, and inflammatory serum biomarkers (glycemia, insulin resistance, progesterone, testosterone, and high-sensitivity C-reactive protein (hs-CRP)) were evaluated before (T0) and after (T1) the LI. After the LI, there were improvements in: body mass index (kg/m2: T0 = 26.0 ± 5.0, T1 = 25.5 ± 4.7; p = 0.035); diet (Mediet score: T0 = 6.9 ± 2.3, T1 = 8.8 ± 2.2; p < 0.001); PAL (MET-min/week: T0 = 647 ± 547, T1 = 1043 ± 564; p < 0.001); VO2max (mL·min-1·kg-1: T0 = 30.5 ± 5.8, T1 = 33.4 ± 6.8; p < 0.001); signs of diastolic dysfunction (participants: T0 = 15, T1 = 10; p = 0.007); AS-DNN/5 min (ms: T0 = 50.6 ± 14.4, T1 = 55.3 ± 16.7; p = 0.032); 24 hLF (ms2: T0 = 589 ± 391, T1 = 732 ± 542; p = 0.014); glycemia (mg/dL: T0 = 100.8 ± 11.4, T1 = 91.7 ± 11.0; p < 0.001); insulin resistance (HOMA-IR score: T0 = 2.07 ± 1.54, T1 = 1.53 ± 1.11; p = 0.005); testosterone (ng/mL: T0 = 0.34 ± 0.27, T1 = 0.24 ± 0.20; p = 0.003); hs-CRP (mg/L: T0 = 2.18 ± 2.14, T1 = 1.75 ± 1.74; p = 0.027). The other parameters did not change. Despite the home-confinement, LI based on exercise and nutrition improved cardiometabolic health in BCSs.

Keywords: COVID-19; Mediterranean diet; breast cancer survivors; cardiotoxicity; cardiovascular fitness; exercise; heart rate variability; home-based lifestyle intervention; secondary and tertiary prevention.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the study design. Abbreviation: HRR, heart rate reserve; RS, remotely supervised; OS, on-site supervised; RSadpt, remote supervision adapted due to COVID-19 pandemic restrictions.

References

    1. Ortenzi F., Albanese E., Fadda M. A Transdisciplinary Analysis of COVID-19 in Italy: The Most Affected Country in Europe. Int. J. Env. Res Public Health. 2020;17:9488. doi: 10.3390/ijerph17249488.
    1. Oldani C., Vanni G., Buonomo O.C. COVID-19 Unintended Effects on Breast Cancer in Italy after the Great Lockdown. Front. Public Health. 2020;8:601748. doi: 10.3389/fpubh.2020.601748.
    1. Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Piñeros M., Znaor A., Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer. 2019;144:1941–1953. doi: 10.1002/ijc.31937.
    1. AIOM AIRTUM PASSI PASSI d’Argento And SIAPEC-IAP Working Group . I numeri del cancro in Italia 2019. 9th ed. Intermedia; Brescia, Italy: 2019.
    1. Nardin S., Mora E., Varughese F.M., D’Avanzo F., Vachanaram A.R., Rossi V., Saggia C., Rubinelli S., Gennari A. Breast Cancer Survivorship, Quality of Life, and Late Toxicities. Front. Oncol. 2020;10:864. doi: 10.3389/fonc.2020.00864.
    1. Bull F.C., Al-Ansari S.S., Biddle S., Borodulin K., Buman M.P., Cardon G., Carty C., Chaput J.P., Chastin S., Chou R., et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020;54:1451–1462. doi: 10.1136/bjsports-2020-102955.
    1. Russo A., Autelitano M., Bisanti L. Metabolic syndrome and cancer risk. Eur. J. Cancer. 2008;44:293–297. doi: 10.1016/j.ejca.2007.11.005.
    1. Pasanisi P., Berrino F., De Petris M., Venturelli E., Mastroianni A., Panico S. Metabolic syndrome as a prognostic factor for breast cancer recurrences. Int. J. Cancer. 2006;119:236–238. doi: 10.1002/ijc.21812.
    1. Mills R.C. Breast Cancer Survivors, Common Markers of Inflammation, and Exercise: A Narrative Review. Breast Cancer. 2017;11:1178223417743976. doi: 10.1177/1178223417743976.
    1. Harbeck N., Penault-Llorca F., Cortes J., Gnant M., Houssami N., Poortmans P., Ruddy K., Tsang J., Cardoso F. Breast cancer. Nat. Rev. Dis. Primers. 2019;5:66. doi: 10.1038/s41572-019-0111-2.
    1. Biganzoli L., Cardoso F., Beishon M., Cameron D., Cataliotti L., Coles C.E., Delgado Bolton R.C., Trill M.D., Erdem S., Fjell M., et al. The requirements of a specialist breast centre. Breast. 2020;51:65–84. doi: 10.1016/j.breast.2020.02.003.
    1. Irwin M.L., McTiernan A., Baumgartner R.N., Baumgartner K.B., Bernstein L., Gilliland F.D., Ballard-Barbash R. Changes in body fat and weight after a breast cancer diagnosis: Influence of demographic, prognostic, and lifestyle factors. J. Clin. Oncol. 2005;23:774–782. doi: 10.1200/JCO.2005.04.036.
    1. Dieli-Conwright C.M., Orozco B.Z. Exercise after breast cancer treatment: Current perspectives. Breast Cancer Targets Ther. 2015;7:353–362. doi: 10.2147/BCTT.S82039.
    1. Schmidt M.E., Wiskemann J., Armbrust P., Schneeweiss A., Ulrich C.M., Steindorf K. Effects of resistance exercise on fatigue and quality of life in breast cancer patients undergoing adjuvant chemotherapy: A randomized controlled trial. Int. J. Cancer. 2015;137:471–480. doi: 10.1002/ijc.29383.
    1. Meneses-Echávez J.F., Correa-Bautista J.E., González-Jiménez E., Schmidt Río-Valle J., Elkins M.R., Lobelo F., Ramírez-Vélez R. The Effect of Exercise Training on Mediators of Inflammation in Breast Cancer Survivors: A Systematic Review with Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2016;25:1009–1017. doi: 10.1158/1055-9965.EPI-15-1061.
    1. De Cicco P., Catani M.V., Gasperi V., Sibilano M., Quaglietta M., Savini I. Nutrition and Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence. Nutrients. 2019;11:1514. doi: 10.3390/nu11071514.
    1. Rock C.L., Doyle C., Demark-Wahnefried W., Meyerhardt J., Courneya K.S., Schwartz A.L., Bandera E.V., Hamilton K.K., Grant B., McCullough M., et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J. Clin. 2012;62:243–274. doi: 10.3322/caac.21142.
    1. Schmitz K.H., Courneya K.S., Matthews C., Demark-Wahnefried W., Galvão D.A., Pinto B.M., Irwin M.L., Wolin K.Y., Segal R.J., Lucia A., et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med. Sci. Sports Exerc. 2010;42:1409–1426. doi: 10.1249/MSS.0b013e3181e0c112.
    1. Grazioli E., Dimauro I., Mercatelli N., Wang G., Pitsiladis Y., Di Luigi L., Caporossi D. Physical activity in the prevention of human diseases: Role of epigenetic modifications. BMC Genom. 2017;18:802. doi: 10.1186/s12864-017-4193-5.
    1. Berrino F., Villarini A., Traina A., Bonanni B., Panico S., Mano M.P., Mercandino A., Galasso R., Barbero M., Simeoni M., et al. Metabolic syndrome and breast cancer prognosis. Breast Cancer Res. Treat. 2014;147:159–165. doi: 10.1007/s10549-014-3076-6.
    1. Bruno E., Gargano G., Villarini A., Traina A., Johansson H., Mano M.P., Santucci De Magistris M., Simeoni M., Consolaro E., Mercandino A., et al. Adherence to WCRF/AICR cancer prevention recommendations and metabolic syndrome in breast cancer patients. Int. J. Cancer. 2016;138:237–244. doi: 10.1002/ijc.29689.
    1. Van den Brink W., van Bilsen J., Salic K., Hoevenaars F.P.M., Verschuren L., Kleemann R., Bouwman J., Ronnett G.V., van Ommen B., Wopereis S. Current and Future Nutritional Strategies to Modulate Inflammatory Dynamics in Metabolic Disorders. Front. Nutr. 2019;6:129. doi: 10.3389/fnut.2019.00129.
    1. Hojman P., Gehl J., Christensen J.F., Pedersen B.K. Molecular Mechanisms Linking Exercise to Cancer Prevention and Treatment. Cell Metab. 2018;27:10–21. doi: 10.1016/j.cmet.2017.09.015.
    1. Hojman P. Exercise protects from cancer through regulation of immune function and inflammation. Biochem. Soc. Trans. 2017;45:905–911. doi: 10.1042/BST20160466.
    1. Seiler A., Chen M.A., Brown R.L., Fagundes C.P. Obesity, Dietary Factors, Nutrition, and Breast Cancer Risk. Curr. Breast Cancer Rep. 2018;10:14–27. doi: 10.1007/s12609-018-0264-0.
    1. World Cancer Research Fund/American Institute for Cancer Research Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. 3rd Export Report. [(accessed on 10 May 2021)];2018 Available online: .
    1. Fabi A., Bhargava R., Fatigoni S., Guglielmo M., Horneber M., Roila F., Weis J., Jordan K., Ripamonti C.I. Cancer-related fatigue: ESMO Clinical Practice Guidelines for Diagnosis and Treatment. Ann. Oncol. 2020;31:713–723. doi: 10.1016/j.annonc.2020.02.016.
    1. Stefan N., Birkenfeld A.L., Schulze M.B. Global pandemics interconnected-obesity, impaired metabolic health and COVID-19. Nat. Rev. Endocrinol. 2021;17:135–149. doi: 10.1038/s41574-020-00462-1.
    1. Derosa L., Melenotte C., Griscelli F., Gachot B., Marabelle A., Kroemer G., Zitvogel L. The immuno-oncological challenge of COVID-19. Nat. Cancer. 2020;1:946–964. doi: 10.1038/s43018-020-00122-3.
    1. Palaskas N.L., Koutroumpakis E., Deswal A. COVID-19 and Cardiovascular Health among Patients with Cancer. Curr. Cardiol. Rep. 2020;22:171. doi: 10.1007/s11886-020-01421-y.
    1. Campbell K.L., Winters-Stone K.M., Wiskemann J., May A.M., Schwartz A.L., Courneya K.S., Zucker D.S., Matthews C.E., Ligibel J.A., Gerber L.H., et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med. Sci. Sports Exerc. 2019;51:2375–2390. doi: 10.1249/MSS.0000000000002116.
    1. American College of Sports Medicine. Riebe D., Ehrman J.K., Liguori G., Magal M. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Wolters Kluwer; Philadelphia, PA, USA: 2018.
    1. Gurgel A.R.B., Mingroni-Netto P., Farah J.C., de Brito C.M.M., Levin A.S., Brum P.C. Determinants of Health and Physical Activity Levels among Breast Cancer Survivors during the COVID-19 Pandemic: A Cross-Sectional Study. Front. Physiol. 2021;12:624169. doi: 10.3389/fphys.2021.624169.
    1. Natalucci V., Villarini M., Emili R., Acito M., Vallorani L., Barbieri E., Villarini A. Special Attention to Physical Activity in Breast Cancer Patients during the First Wave of COVID-19 Pandemic in Italy: The DianaWeb Cohort. J. Pers. Med. 2021;11:381. doi: 10.3390/jpm11050381.
    1. Newton R.U., Hart N.H., Clay T. Keeping Patients with Cancer Exercising in the Age of COVID-19. JCO Oncol. Pract. 2020;16:656–664. doi: 10.1200/OP.20.00210.
    1. Narici M., De Vito G., Franchi M., Paoli A., Moro T., Marcolin G., Grassi B., Baldassarre G., Zuccarelli L., Biolo G., et al. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur. J. Sport Sci. 2020:1–22. doi: 10.1080/17461391.2020.1761076.
    1. Di Renzo L., Gualtieri P., Pivari F., Soldati L., Attinà A., Cinelli G., Leggeri C., Caparello G., Barrea L., Scerbo F., et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020;18:229. doi: 10.1186/s12967-020-02399-5.
    1. Montemurro N. The emotional impact of COVID-19: From medical staff to common people. Brain Behav. Immun. 2020;87:23–24. doi: 10.1016/j.bbi.2020.03.032.
    1. Villarini A., Pasanisi P., Traina A., Mano M.P., Bonanni B., Panico S., Scipioni C., Galasso R., Paduos A., Simeoni M., et al. Lifestyle and breast cancer recurrences: The DIANA-5 trial. Tumori J. 2012;98:1–18. doi: 10.1177/030089161209800101.
    1. Pistelli M., Natalucci V., Bastianelli L., Scortichini L., Agostinelli V., Merloni F., Savini A., Capecci M., Ceravolo M.G., Serrani R., et al. Assessing the impact of 12 months lifestyle interventions on breast cancer secondary prevention: A modeling approach; In Proceedings of the San Antonio Breast Cancer Virtual Symposium; San Antonio, TX, USA . 7–10 December 2021; p. 4.
    1. Sternfeld B., Weltzien E., Quesenberry C.P., Castillo A.L., Kwan M., Slattery M.L., Caan B.J. Physical Activity and Risk of Recurrence and mortality in breast cancer survivors: Findings from the LACE study. Cancer Epidemiol. Biomark. Prev. 2009;18:87–95. doi: 10.1158/1055-9965.EPI-08-0595.
    1. Dieli-Conwright C.M., Lee K., Kiwata J.L. Reducing the Risk of Breast Cancer Recurrence: An Evaluation of the Effects and Mechanisms of Diet and Exercise. Curr. Breast Cancer Rep. 2016;8:139–150. doi: 10.1007/s12609-016-0218-3.
    1. Spencer J.C., Wheeler S.B. A systematic review of Motivational Interviewing interventions in cancer patients and survivors. Patient Educ. Couns. 2016;99:1099–1105. doi: 10.1016/j.pec.2016.02.003.
    1. Ministero della Salute Linee di Indirizzo Percorsi Nutrizionali Nei Pazienti Oncologici. [(accessed on 10 May 2021)]; Available online: .
    1. Ministero della Salute Linee di Indirizzo Sull’attività Fisica per le Differenti Fasce D’età e con Riferimento a Situazioni Fisiologiche e Fisiopatologiche e a Sottogruppi Specifici di Popolazione. [(accessed on 10 May 2021)]; Available online: .
    1. Villarini A., Villarini M., Gargano G., Moretti M., Berrino F. DianaWeb: A demonstration project to improve breast cancer prognosis through lifestyles. Epidemiol. E Prev. 2015;39:402–405.
    1. Gianfredi V., Nucci D., Balzarini M., Acito M., Moretti M., Villarini A., Villarini M. E-Coaching: The DianaWeb study to prevent breast cancer recurrences. Clin. Ter. 2020;170:e59–e65.
    1. Martínez-González M.A., García-Arellano A., Toledo E., Salas-Salvadó J., Buil-Cosiales P., Corella D., Covas M.I., Schröder H., Arós F., Gómez-Gracia E., et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: The PREDIMED trial. PLoS ONE. 2012;7:e43134. doi: 10.1371/journal.pone.0043134.
    1. Craig C.L., Marshall A.L., Sjöström M., Bauman A.E., Booth M.L., Ainsworth B.E., Pratt M., Ekelund U., Yngve A., Sallis J.F., et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003;35:1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. Lee P.H., Macfarlane D.J., Lam T.H., Stewart S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011;8:115. doi: 10.1186/1479-5868-8-115.
    1. Jones L.W., Eves N.D., Haykowsky M., Joy A.A., Douglas P.S. Cardiorespiratory exercise testing in clinical oncology research: Systematic review and practice recommendations. Lancet Oncol. 2008;9:757–765. doi: 10.1016/S1470-2045(08)70195-5.
    1. Ferri Marini C., Correale L., Carnevale Pellino V., Federici A., Vandoni M., Lucertini F. Assessing Maximal Oxygen Uptake: Creating Personalized Incremental Exercise Protocols Simply and Quickly. Strength Cond. J. 2021;43:86–92. doi: 10.1519/SSC.0000000000000569.
    1. Gellish R.L., Goslin B.R., Olson R.E., McDonald A., Russi G.D., Moudgil V.K. Longitudinal modeling of the relationship between age and maximal heart rate. Med. Sci. Sports Exerc. 2007;39:822–829. doi: 10.1097/mss.0b013e31803349c6.
    1. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J.-Cardiovasc. Imaging. 2015;16:233–270. doi: 10.1093/ehjci/jev014.
    1. Malik M. Heart Rate Variability. Eur. Heart J. 1996;17:354–381. doi: 10.1093/oxfordjournals.eurheartj.a014868.
    1. Thygesen K., Mair J., Giannitsis E., Mueller C., Lindahl B., Blankenberg S., Huber K., Plebani M., Biasucci L.M., Tubaro M., et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur. Heart J. 2012;33:2252–2257. doi: 10.1093/eurheartj/ehs154.
    1. Bondar R.J., Mead D.C. Evaluation of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides in the hexokinase method for determining glucose in serum. Clin. Chem. 1974;20:586–590. doi: 10.1093/clinchem/20.5.586.
    1. Roeschlau P., Bernt E., Gruber W. Enzymatic determination of total cholesterol in serum. Z Klin. Chem. Klin. Biochem. 1974;12:226.
    1. Bonora E., Targher G., Alberiche M., Bonadonna R.C., Saggiani F., Zenere M.B., Monauni T., Muggeo M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: Studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. 2000;23:57–63. doi: 10.2337/diacare.23.1.57.
    1. Gerhard I., Runnebaum B. Hormone load tests in the first half of pregnancy–A diagnostic and therapeutic approach. Biol. Res. Pregnancy Perinatol. 1984;5:157–173.
    1. Newman J.D., Handelsman D.J. Challenges to the measurement of oestradiol: Comments on an endocrine society position statement. Clin. Biochem. Rev. 2014;35:75–79.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Elsevier Science; Amsterdam, The Netherlands: 1988.
    1. Kang D.W., Lee J., Suh S.H., Ligibel J., Courneya K.S., Jeon J.Y. Effects of Exercise on Insulin, IGF Axis, Adipocytokines, and Inflammatory Markers in Breast Cancer Survivors: A Systematic Review and Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2017;26:355–365. doi: 10.1158/1055-9965.EPI-16-0602.
    1. Arnett D.K., Khera A., Blumenthal R.S. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Part 1, Lifestyle and Behavioral Factors. JAMA Cardiol. 2019;4:1043–1044. doi: 10.1001/jamacardio.2019.2604.
    1. Lloyd-Jones D.M., Hong Y., Labarthe D., Mozaffarian D., Appel L.J., Van Horn L., Greenlund K., Daniels S., Nichol G., Tomaselli G.F., et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation. 2010;121:586–613. doi: 10.1161/CIRCULATIONAHA.109.192703.
    1. Reis R.S., Salvo D., Ogilvie D., Lambert E.V., Goenka S., Brownson R.C., Committee L.P.A.S.E. Scaling up physical activity interventions worldwide: Stepping up to larger and smarter approaches to get people moving. Lancet. 2016;388:1337–1348. doi: 10.1016/S0140-6736(16)30728-0.
    1. Lashinger L.M., Rossi E.L., Hursting S.D. Obesity and resistance to cancer chemotherapy: Interacting roles of inflammation and metabolic dysregulation. Clin. Pharmacol. Ther. 2014;96:458–463. doi: 10.1038/clpt.2014.136.
    1. Irwin M.L. Weight loss interventions and breast cancer survival: The time is now. J. Clin. Oncol. 2014;32:2197–2199. doi: 10.1200/JCO.2014.56.4583.
    1. Holick C.N., Newcomb P.A., Trentham-Dietz A., Titus-Ernstoff L., Bersch A.J., Stampfer M.J., Baron J.A., Egan K.M., Willett W.C. Physical activity and survival after diagnosis of invasive breast cancer. Cancer Epidemiol. Biomark. Prev. 2008;17:379–386. doi: 10.1158/1055-9965.EPI-07-0771.
    1. Biamonte E., Pegoraro F., Carrone F., Facchi I., Favacchio G., Lania A.G., Mazziotti G., Mirani M. Weight change and glycemic control in type 2 diabetes patients during COVID-19 pandemic: The lockdown effect. Endocrine. 2021;72:604–610. doi: 10.1007/s12020-021-02739-5.
    1. Pietrobelli A., Pecoraro L., Ferruzzi A., Heo M., Faith M., Zoller T., Antoniazzi F., Piacentini G., Fearnbach S.N., Heymsfield S.B. Effects of COVID-19 Lockdown on Lifestyle Behaviors in Children with Obesity Living in Verona, Italy: A Longitudinal Study. Obesity. 2020;28:1382–1385. doi: 10.1002/oby.22861.
    1. Turati F., Carioli G., Bravi F., Ferraroni M., Serraino D., Montella M., Giacosa A., Toffolutti F., Negri E., Levi F., et al. Mediterranean Diet and Breast Cancer Risk. Nutrients. 2018;10:326. doi: 10.3390/nu10030326.
    1. Schwingshackl L., Schwedhelm C., Galbete C., Hoffmann G. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients. 2017;9:1063. doi: 10.3390/nu9101063.
    1. Courneya K.S., Mackey J.R., Bell G.J., Jones L.W., Field C.J., Fairey A.S. Randomized controlled trial of exercise training in postmenopausal breast cancer survivors: Cardiopulmonary and quality of life outcomes. J. Clin. Oncol. 2003;21:1660–1668. doi: 10.1200/JCO.2003.04.093.
    1. Daley A.J., Crank H., Saxton J.M., Mutrie N., Coleman R., Roalfe A. Randomized trial of exercise therapy in women treated for breast cancer. J. Clin. Oncol. 2007;25:1713–1721. doi: 10.1200/JCO.2006.09.5083.
    1. Vincent F., Labourey J.L., Leobon S., Antonini M.T., Lavau-Denes S., Tubiana-Mathieu N. Effects of a home-based walking training program on cardiorespiratory fitness in breast cancer patients receiving adjuvant chemotherapy: A pilot study. Eur. J. Phys. Rehabil. Med. 2013;49:319–329.
    1. Ligibel J.A., Partridge A., Giobbie-Hurder A., Campbell N., Shockro L., Salinardi T., Salinardri T., Winer E.P. Physical and psychological outcomes among women in a telephone-based exercise intervention during adjuvant therapy for early stage breast cancer. J. Women’s Health. 2010;19:1553–1559. doi: 10.1089/jwh.2009.1760.
    1. Scott E., Daley A.J., Doll H., Woodroofe N., Coleman R.E., Mutrie N., Crank H., Powers H.J., Saxton J.M. Effects of an exercise and hypocaloric healthy eating program on biomarkers associated with long-term prognosis after early-stage breast cancer: A randomized controlled trial. Cancer Causes Control. 2013;24:181–191. doi: 10.1007/s10552-012-0104-x.
    1. Chandrasekaran B., Ganesan T.B. Sedentarism and chronic disease risk in COVID 19 lockdown-a scoping review. Scott. Med. J. 2021;66:3–10. doi: 10.1177/0036933020946336.
    1. Jones L.W., Courneya K.S., Mackey J.R., Muss H.B., Pituskin E.N., Scott J.M., Hornsby W.E., Coan A.D., Herndon J.E., Douglas P.S., et al. Cardiopulmonary function and age-related decline across the breast cancer survivorship continuum. J. Clin. Oncol. 2012;30:2530–2537. doi: 10.1200/JCO.2011.39.9014.
    1. Jones L.W., Eves N.D., Haykowsky M., Freedland S.J., Mackey J.R. Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol. 2009;10:598–605. doi: 10.1016/S1470-2045(09)70031-2.
    1. Koelwyn G.J., Khouri M., Mackey J.R., Douglas P.S., Jones L.W. Running on empty: Cardiovascular reserve capacity and late effects of therapy in cancer survivorship. J. Clin. Oncol. 2012;30:4458–4461. doi: 10.1200/JCO.2012.44.0891.
    1. Jones L.W., Haykowsky M., Peddle C.J., Joy A.A., Pituskin E.N., Tkachuk L.M., Courneya K.S., Slamon D.J., Mackey J.R. Cardiovascular risk profile of patients with HER2/neu-positive breast cancer treated with anthracycline-taxane-containing adjuvant chemotherapy and/or trastuzumab. Cancer Epidemiol. Biomark. Prev. 2007;16:1026–1031. doi: 10.1158/1055-9965.EPI-06-0870.
    1. Jones L.W., Haykowsky M., Pituskin E.N., Jendzjowsky N.G., Tomczak C.R., Haennel R.G., Mackey J.R. Cardiovascular reserve and risk profile of postmenopausal women after chemoendocrine therapy for hormone receptor–positive operable breast cancer. Oncologist. 2007;12:1156–1164. doi: 10.1634/theoncologist.12-10-1156.
    1. Upshaw J.N., Finkelman B., Hubbard R.A., Smith A.M., Narayan H.K., Arndt L., Domchek S., DeMichele A., Fox K., Shah P., et al. Comprehensive Assessment of Changes in Left Ventricular Diastolic Function With Contemporary Breast Cancer Therapy. JACC Cardiovasc. Imaging. 2020;13:198–210. doi: 10.1016/j.jcmg.2019.07.018.
    1. Kloter E., Barrueto K., Klein S.D., Scholkmann F., Wolf U. Heart Rate Variability as a Prognostic Factor for Cancer Survival-A Systematic Review. Front. Physiol. 2018;9:623. doi: 10.3389/fphys.2018.00623.
    1. Kangas P., Tikkakoski A., Uitto M., Viik J., Bouquin H., Niemelä O., Mustonen J., Pörsti I. Metabolic syndrome is associated with decreased heart rate variability in a sex-dependent manner: A comparison between 252 men and 249 women. Clin. Physiol. Funct. Imaging. 2019;39:160–167. doi: 10.1111/cpf.12551.
    1. Thayer J.F., Ahs F., Fredrikson M., Sollers J.J., Wager T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012;36:747–756. doi: 10.1016/j.neubiorev.2011.11.009.
    1. Lampert R., Bremner J.D., Su S., Miller A., Lee F., Cheema F., Goldberg J., Vaccarino V. Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men. Am. Heart J. 2008;156:759.e1–759.e7. doi: 10.1016/j.ahj.2008.07.009.
    1. Lima-Silva A.E., Bertuzzi R., Dalquano E., Nogueira M., Casarini D., Kiss M.A., Ugrinowitsch C., Pires F.O. Influence of high- and low-carbohydrate diet following glycogen-depleting exercise on heart rate variability and plasma catecholamines. Appl. Physiol. Nutr. Metab. 2010;35:541–547. doi: 10.1139/H10-043.
    1. Toohey K., Pumpa K., McKune A., Cooke J., Welvaert M., Northey J., Quinlan C., Semple S. The impact of high-intensity interval training exercise on breast cancer survivors: A pilot study to explore fitness, cardiac regulation and biomarkers of the stress systems. BMC Cancer. 2020;20:787. doi: 10.1186/s12885-020-07295-1.
    1. Fairey A.S., Courneya K.S., Field C.J., Bell G.J., Jones L.W., Mackey J.R. Effects of exercise training on fasting insulin, insulin resistance, insulin-like growth factors, and insulin-like growth factor binding proteins in postmenopausal breast cancer survivors: A randomized controlled trial. Cancer Epidemiol. Biomark. Prev. 2003;12:721–727.
    1. Schmitz K.H., Holtzman J., Courneya K.S., Mâsse L.C., Duval S., Kane R. Controlled physical activity trials in cancer survivors: A systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 2005;14:1588–1595. doi: 10.1158/1055-9965.EPI-04-0703.
    1. Dittus K.L., Harvey J.R., Bunn J.Y., Kokinda N.D., Wilson K.M., Priest J., Pratley R.E. Impact of a behaviorally-based weight loss intervention on parameters of insulin resistance in breast cancer survivors. BMC Cancer. 2018;18:351. doi: 10.1186/s12885-018-4272-2.
    1. Barchitta M., Maugeri A., Magnano San Lio R., Quattrocchi A., Degrassi F., Catalano F., Basile G., Agodi A. The Effects of Diet and Dietary Interventions on the Quality of Life among Breast Cancer Survivors: A Cross-Sectional Analysis and a Systematic Review of Experimental Studies. Cancers. 2020;12:322. doi: 10.3390/cancers12020322.
    1. Van Kruijsdijk R.C., van der Wall E., Visseren F.L. Obesity and cancer: The role of dysfunctional adipose tissue. Cancer Epidemiol. Biomark. Prev. 2009;18:2569–2578. doi: 10.1158/1055-9965.EPI-09-0372.
    1. Pierce B.L., Ballard-Barbash R., Bernstein L., Baumgartner R.N., Neuhouser M.L., Wener M.H., Baumgartner K.B., Gilliland F.D., Sorensen B.E., McTiernan A., et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J. Clin. Oncol. 2009;27:3437–3444. doi: 10.1200/JCO.2008.18.9068.
    1. Olefsky J.M., Glass C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 2010;72:219–246. doi: 10.1146/annurev-physiol-021909-135846.
    1. Kabat G.C., Kim M.Y., Lee J.S., Ho G.Y., Going S.B., Beebe-Dimmer J., Manson J.E., Chlebowski R.T., Rohan T.E. Metabolic Obesity Phenotypes and Risk of Breast Cancer in Postmenopausal Women. Cancer Epidemiol. Biomark. Prev. 2017;26:1730–1735. doi: 10.1158/1055-9965.EPI-17-0495.
    1. Kerr J., Anderson C., Lippman S.M. Physical activity, sedentary behaviour, diet, and cancer: An update and emerging new evidence. Lancet Oncol. 2017;18:e457–e471. doi: 10.1016/S1470-2045(17)30411-4.
    1. Asegaonkar S.B., Asegaonkar B.N., Takalkar U.V., Advani S., Thorat A.P. C-Reactive Protein and Breast Cancer: New Insights from Old Molecule. Int. J. Breast Cancer. 2015;2015:145647. doi: 10.1155/2015/145647.
    1. Michigan A., Johnson T.V., Master V.A. Review of the relationship between C-reactive protein and exercise. Mol. Diagn. Ther. 2011;15:265–275. doi: 10.1007/BF03256418.
    1. Frydenberg H., Thune I., Lofterød T., Mortensen E.S., Eggen A.E., Risberg T., Wist E.A., Flote V.G., Furberg A.S., Wilsgaard T., et al. Pre-diagnostic high-sensitive C-reactive protein and breast cancer risk, recurrence, and survival. Breast Cancer Res. Treat. 2016;155:345–354. doi: 10.1007/s10549-015-3671-1.
    1. Bourdillon N., Yazdani S., Schmitt L., Millet G.P. Effects of COVID-19 lockdown on heart rate variability. PLoS ONE. 2020;15:e0242303. doi: 10.1371/journal.pone.0242303.
    1. Raymond E., Thieblemont C., Alran S., Faivre S. Impact of the COVID-19 Outbreak on the Management of Patients with Cancer. Target Oncol. 2020;15:249–259. doi: 10.1007/s11523-020-00721-1.
    1. Curigliano G. How to Guarantee the Best of Care to Patients with Cancer during the COVID-19 Epidemic: The Italian Experience. Oncologist. 2020;25:463–467. doi: 10.1634/theoncologist.2020-0267.
    1. Grazioli E., Cerulli C., Dimauro I., Moretti E., Murri A., Parisi A. New Strategy of Home-Based Exercise during Pandemic COVID-19 in Breast Cancer Patients: A Case Study. Sustainability. 2020;12:6940. doi: 10.3390/su12176940.

Source: PubMed

3
Subskrybuj